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1

Introduction

Intrigued by the usefulness, flexibility and seemingly natural logic of the Bayesian paradigm
and the Dirichlet process (see [Teh et al., 2005] for a full account of the Dirichlet process)
as well as interested in explaining the correlated behaviour of stock data, I put the Dirich-
let process to the test in this thesis. Examples of implementations of the Dirichlet process
include [Blei and Lafferty, 2006], [Xing and Girolami, 2007], [Lienou et al., 2010] and sssssssss
[Ramanathan and Wechsler, 2013] but for the purpose of this study Two new models with strong
connections with many other models in the literature have been formulated. The first of the
two defines a clustering algorithm on the Kalman-filtered time cross sections of stock data.
That is, it first applies a Kalman filter to obtain the smoother states or the local level, and
consequently it applies a clustering algorithm on the individual snapshots in time similar to
[Escobar and West, 1995], using a tendency to cluster that has some similarity with t-distributed
stochastic neighbour embedding (t-SNE), see [Maaten and Hinton, 2008], but rather Bayesian.
Whereas traditional machine learning clustering algorithms tend to rely on various limiting as-
sumptions, for example k-means on the number of clusters, affords the Dirichlet process greater
flexibility, as shown by the examples of implementations. As such, the clustering algorithm
can be described as Bayesian. However, in this case, with great flexibility and complexity come
great requirements in computational power as well as great visualization issues. It appears to be
difficult to obtain useful visuals of a high-dimensional, partially discrete, partially continuous
posterior distributions. In response, I chose to implement a greedy maximum a priori (MAP)
methodology to convert distributions to probabilities, which appears not to have been proposed
before. The problem of intractable MAP has been discussed before, and solutions that focus
on adjusting the Gibbs sampling procedure have been introduced in [Raykov et al., 2014] and
[Bródka et al., 2012]. However, the solution I propose leaves the Gibbs sampling procedure
fully intact, thereby avoiding additional complexity. However, this might be interesting further
research. In the greedy MAP, each iteration within the Gibbs sampling procedure forms an
allocation. The set of those allocations can then be used to infer a distribution for a certain
observation to be clustered with other observations. The greedy MAP is an effort that obtains the
MAP of this distribution in a greedy fashion. It clusters observations that have the highest proba-
bilities to be clustered, while adhering to some sort of transitivity. E.g. the fact that observations
can only be clustered once and the observations they are clustered with all have to belong to
that certain cluster as well. As such obtaining decent visualization is one of the directions where
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10 Introduction

future improvements could be made. Besides, although the performance of the clustering model
can be decent under the right hyperparametrization, connecting those time-snapshots appears
to be an open unsolved puzzle. Several methods that do exist are described in this thesis as well
as a short discussion of whether performing clustering on subsequences of time series and later
connecting these is actually statistically valid. The well-known account of [Keogh and Lin, 2005]
actually quite strongly attempts to articulate the opposite.

Whereas the first model deals with the financial data directly, the second model focuses on the
variance-covariance matrices. The literature surrounding this topic is vast, consisting of the
prominent GARCH approaches, see [Bollerslev, 1986], as well as the stochastic volatilty frame-
work, see [Asai et al., 2006]t, as well as a multitude of more recent directions including, for ex-
ample, [Noureldin et al., 2012], [Philipov and Glickman, 2006], [Golosnoy et al., 2012], sssssss
[Chiriac and Voev, 2011], [Bauer and Vorkink, 2006] and [Jin and Maheu, 2009]. It takes monthly
variance-covariance matrices as input, and decomposes it into variances and correlations. It
then essentially applies the first model to those correlations and models the variance according
to an inverse gamma distribution with a commonly-used parametrization. Furthermore, the
parameter that influences the number of clusters set up by the Dirichlet process, α, is estimated
using a state space model in order to conveniently connect the model with the time dimension.
The literature on modelling of variance-covariance models is already vast, but the foundations
I build upon are rarely combined as in this thesis. Nevertheless, the model was inspired by
the seminal work of [Uhlig, 1994], and foremost by the work of [Jin and Maheu, 2009] and
[Windle et al., 2014], which provides a convenient framework. The top layer of the model,
termed the Clustering Correlations model, resembles the standard formulation for the mod-
elling of variance-covariance matrices as proposed by the authors of [Windle et al., 2014]. The
Bayesian aspect, and the integration of the Dirichlet Process as a prior for the distributions
of correlations have, however, barely any resonance with the literature yet. As such, the in-
ner workings of the model are the contribution of this thesis to science. This thesis forms an
exploration of future possibilities of those type of models as it attempts to directly take advan-
tage of the underlying tendency of stocks to move together stocks correlations. This makes
sense as global financial variables tend to affect financial markets as a whole, as illustrated by 9.1.

The clustering model appears to be quite effective, notwithstanding that the right tuning of
the underlying parameters and hyperparameters remains vital. It is difficult to find a rationale
for certain values, but the difference in terms of clustering performance might be significant.
The performance of the Clustered Correlations algorithm appears difficult to assess. First of
all, in order to visualize the underlying distribution, it is necessary to use creative techniques
to summarize simulations as well as aggregation. I present means that are aggregated over
several variables within the model. It appears that the resulting variance-covariance matrices
underestimate the observations. Next to that, the correlation matrices tend to be quite volatile.
However, a rule of thumb that can be concluded from the results would be that correlations
among portfolios go hand in hand with financial instability but these results also show that this
process happens instantaneously rather than gradually.
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This thesis is set up in the following way. Chapter 2 involves a short introduction of the Bayesian
framework and way of thinking, whereas Chapter 3 then introduces the Dirichlet Processes by
means of the four well-known interpretation. Then an account of the Kalman filter is described
in chapter 5. The methods introduced in chapters 4 and 5 are then used to construct the 2-step
procedure in chapter 6, which implements the clustering model on Kalman-filtered stock data.
Chapter 7 then discusses those results, whereas chapter 8 introduces the concept of evolutionary
clustering through direct methods as well as indirect methods that focus on clustering correlation
and variance covariance matrices. As such, chapter 8 forms the bridge between the two different
models and shows the practical inconvenience and unnecessary complexity inherent in direct
evolutionary clustering methods. That does not imply that the Clustered Correlations model,
as introduced in Chapter 9, is not complex. It is, however, true that the Clustered Correlations
model forms an attempt to fabricate a model using the Dirichlet process and the Kalman filter.
The results of the Clustered Correlations Model are discussed in Chapter 10 as well as economic
and financial interpretations. Finally, Chapter 11 forms a short conclusion on the work that has
been done and reflects on possible further scientific endeavours.





2

The Bayesian Framework

2.1 Frequentist vs. Bayesian

put some research in this The 20th century of statistical inference is often said to be dominated
by the frequentist reasoning. A somewhat conflicting view, namely Bayesian reasoning, has
steadily been gaining ground as well. Philosophically, the difference between the two paradigms
is subtle. The mathematical rhetoric underlying the paradigms more illustrates the difference,
nevertheless. Due to the historic dominance of the frequentist framework, it is often common
for statistics students to be more comfortable with the frequentist paradigm. They are taught
to think about a probability as being defined by the frequency of that event based on previous
observations, using asymptotics to establish proofs of the paradigm. Inference then can be done
based on the idea that if we repeat an experiment a large number of times, each time obtaining
some observation for some statistic of interest, we can construct a probability density function
and set up a hypothesis test.

Whereas the frequentist approach argues using asymptotics and fixed models and parameters,
the Bayesian paradigm takes a different approach. The Bayesian statisticians set up a prior belief
of some process and use the data to fine-tune the parameters of this process. In a sense, by
stating a prior belief, they inject a bit of subjectivity in the model, although uninformative prior
beliefs are quite common as well. As such, probability is interpreted in the Bayesian framework
as a reasonable expectation representing a state of knowledge or as a quantification of personal
belief. The Bayesian framework therefore commonly allows for a full account of uncertainty. As
such, the Bayesian framework models uncertainty implicitly.

Although the new york times 1 might attempt to invigorate the debate over which paradigm is
superior once every while, [Kass, 2011] calls out that a healthy degree of pragmatism nowadays
is the dominant statistical philosophy. There are clear problems that are suitable for the fre-
quentist approach and similarly for the Bayesian approach. It is thus not important to choose a
side or identify oneself as either frequentist or Bayesian. I position himself on a more moderate
ground within the frequentist-Bayesian spectrum as well. Of greater importance is the necessity
to applicate either one of the two paradigms in the right way and account for uncertainty and

1https://www.nytimes.com/2014/09/30/science/the-odds-continually-updated.html?r = 1
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14 The Bayesian Framework

assumptions along the way. As such, the frequentist and Bayesian can find common ground in
their focus on defining assumptions, the model and its validity rather than the results.

2.2 The Bayesian Paradigm

A typical Bayesian model relies on the input of two probability distributions. First of all, it
requires a specification of the distribution of the data given the parameters (P[y|θ]), e.g. the
likelihood. Secondly, a prior on those parameters need to be established (P[θ]). Then, using
bayes law we can combine the prior and the likelihood as:

P[θ|y] = P[y|θ]P[θ]
P[y]

(2.1)

Whereas the probability of the data, often termed the marginal likelihood or model evidence:

P[y] =
∫

θ
P[y|θ]P[θ]dθ (2.2)

This integral can be hard to evaluate, but as it is a normalizing constant, we can often neglect it
in practice and establish:

P[θ|y] ∝ P[y|θ]P[θ] (2.3)

Often we require the parameters of the model to follow some distribution described by some
hyperparameters. The model can then be easily extended to account for this hierarchy by
conditioning and decomposing:

P[θ] = P[θ|α]P[α] (2.4)

Where α denotes the hyperparameter.

Evidently, the choice of prior is of major importance. In practice, it is often more important to
fully discuss or establish the applicability of a certain prior than the results. In order to make
use of the advantages of the Bayesian framework without injecting quasi-subjective informa-
tion, often practioners opt for uninformative priors such as a uniform one or Jeffrey’s prior,
[Jeffreys, 1946].

If initial information is more properly defined and readily available, it is more useful to allow
the model to take this into account. Traditionally, in such a setting it was convenient to rely on
conjugate priors. The usefulness of a conjugate prior is that the posterior distribution will be
in the same distribution family. Then calculation may be expressed in a closed form. In such
a setting we are not required to simulate the posterior. In the early days of Bayesian statistics,
this specifically was of great relevance. For example, if the data is distributed according to a
binomial distribution given parameters N and θ, where N is known and θ is the parameter of
interest, a conjugate prior would be beta(α, β). This gives the posterior beta(α + x,b + N − x).
Where x depicts the data:

Likelihood: x|θ ∼bin(N, θ)

Prior: θ ∼beta(α, β)

Posterior: θ|x ∼beta(α + x, b + N − x)

(2.5)
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We can model probabilities according to the example above. Then θ is restricted to the interval
[0, 1]. Picking α = 2, β = 3 and given some dataset x, the resulting beta distributions will be of
the form depicted in figure 2.1.

Fig. 2.1: Bayesian Model with Conjugate Beta-prior

Figure 2.1 illustrates the convenience of both Bayesian reasoning and applicability of its meth-
ods. Using initial knowledge and stored data, depending on the structure of the model and
the hyperparameters, we arrive somewhere in between the our previous knowledge and the
observed data. Furthermore, the outcome is a complete characterization of the parameters
of interest. Instead of testing for a certain hypothesis and derive a binary answer we obtain
probabilities for all posterior values of the parameter. In figure 2.1 a probability was modelled
under a prior assigning most probability to the lower values, and combined with the data to
obtain a certain degree of proof that the value of the parameter of interest lies between 0.4 and
0.8 with nearly full probability. However, the grand caveat of Bayesian statistics is showcased
as well. That is, the choice of prior might heavily influence the posterior values, but in turn
requires a thorough account of the choice of the specific prior distribution.

2.3 Obtaining the Posterior

The development of computational power has enabled the use of approximate algorithms to
simulate distributions. One simulation class depends on trimming down a certain benchmark
that is close to the posterior distribution, as in acceptance/rejectance and importance sampling.
In acceptance/rejectance sampling, draws are generated by the benchmark and accepted de-
pending on the ratio between the probability assigned to the sample by the benchmark and the
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probability obtained from the posterior pdf. Importance sampling in contrast retains all the
draws, but approximately weights the draws. More sophisticated algorithms use some form of
Markov chain Monte Carlo (MCMC) methodology where the elements of the markov chain are
distributions and monte carlo the procedure that defines the steps within that Markov chain
such that the MCMC as a whole converges to the posterior distribution of interest. Two widely
algorithms are the Gibbs Sampler and the Metropolis Hastings. The Gibbs sampler iteratively
assigns new values to parameters of interest conditioning on the other parameters being fixed.
As such, it relies on marginal distributions and these being obtainable from the posterior dis-
tribution. Metropolis Hastings in contrast uses a candidate density to describe jumps between
Markov states and accepts those jumps based on a predefined condition. See for example
[Geweke, 2005], [Hartig et al., 2011] and figure 2.2 below, retrieved from [Hartig et al., 2011], as
well.

Fig. 2.2: Posterior Simulation Methodologies

2.4 Gibbs Sampler

Chapter 4 introduces the Dirichlet process, which is one of the most important building blocks
of this thesis as well. As the estimation of the Dirichlet process makes use of a Gibbs sampler,
this section provides a more thorough explanation of that sampler.

Denote the vector θ = (θ1, ..., θn) as a vector of parameters of the model, a state variable of the
Markov chain. Within the Gibbs algorithm, an elementary update then stochastically assigns
a new value on one of the xi conditioned on the others. These one-dimensional conditional
distributions are called full conditionals and are derived from the posterior distribution. The
Gibbs update is then characterized by:

The Gibbs sampler is not unique in Bayesian Statistics. It was coined earlier in statistical mechan-
ics where it was called the "heat bath" algorithm. As noted by [Van Laarhoven and Aarts, 1987]
"In condensed matter physics, annealing denotes a process in which a solid in a heat bath is
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Algorithm 1 Gibbs Sampler

Require: θ0
1: for ∀t ∈ [1, T] do
2: Update θ1,t according to P[θ1,t|θ2,t−1, ..., θn,t−1]
3: Update θ2,t according to P[θ2,t|θ1,t, θ3,t−1..., θn,t−1]
4: ...
5: Update θn,t according to P[θn,t|θ1,t, θ2,t, ..., θn−1,t]

heated up by increasing the temperature of the heat bath to the maximum value at which all
particles of the solid randomly arrange themselves in the liquid phase, following by cooling
through slowly lowering the temperature of the heat bath". In the cooling process the bath and
the solid iteratively reach new thermal equilibria. The probability of being in a state character-
ized by a certain energy given a certain temperature value T is characterized by a Boltzman
Distribution. The path of thermal equilibria comes down to solving a large stochastic combina-
torial optimization problem due to the system of particles and states in the liquid and the solid.
It turns out that this can be accurately simulated using the Gibbs sampling methodology. This
analogy is also were the term simulated annealing comes from and thus explains the relationship
between Gibbs sampling and simulated annealing.

In order to show the Gibbs sampler in practice, follow the example of [Gelfand and Smith, 1990]
of a simple variance component model:
Let the observed data yi,j be distributed with i = 1, ..., K and j = 1, ..., K as:

yij ∼ Normal
(
θi,

1
λε

)
θi ∼ Normal

(
µ,

1
λθ

) (2.6)

Note that the parameter µ, λθ and λε are treated as quantities with prior distributed instead
as unknown constants in frequentist paradigm. Then, defining conjugate priors with known
hyperparameters:

µ ∼ Normal
(
µ0,

1
λ0

)
λθ ∼ Gamma(a1, b1)

λε ∼ Gamma(a2, b2)

(2.7)

Then in order to able to apply the Gibbs sampler it is necessary to set up the joint distribution
and derive the full conditional probability distributions, if it is possible to do so. The joint is:

h(θ1, ..., θk, µ, λθ , λε) = λ
− λε

2 ∑ij(yij−θi)
2λK/2

θ
ε e−

λθ
2 ∑i(θi−µ)2

e−
λε
2 ∑ij(yij−θi)

2
λa1−1

θ e−b1λθ λa2−1
ε e−b2λε (2.8)
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From where it is possible to derive the conditional distributions as:

λθ |θ ∼ Gamma(a1 + K/2, b1 +
1
2 ∑

i
(θi − µ)2)

λε|θ ∼ Gamma(a2 + JK/2, b2 +
1
2 ∑

ij
(yij − θi)

2)

µ|θ ∼ Normal(
λ0µ0 + Kλθ θ̄

λ0 + Kλθ
,

1
λ0 + Kλθ

)

θi|θ ∼ Normal(
λθµ + Jλεȳi

λθ + Jλε
,

1
λθ + Jλε

)

(2.9)

The rationale can easily be extended to multivariate cases where variables are update in groups.
This gives rise to the block Gibbs sampler, because one updates a block from their joint condi-
tional distribution given the other variables.

The beauty of Gibbs sampling is that one can sample the joint distribution knowing only
full conditionals. But as mentioned before, if these are not readily available, then it is greatest
weakness as well. In such cases, Gibbs should be completely disregarded as a method to simulate
the posterior. It is interesting to note that following the publication of [Gelfand and Smith, 1990]
the Gibbs sampling procedure was met with excitement by the Bayesian community. But only
a few years later it was recognized that the Gibbs sampler gained prominence by accident. It
appeared that the Gibbs sampler was overhyped. Relying solely on the Gibbs sampler and
thereby excluding other MCMC methods is nowadays considered bad practice and ignorance.
Where it not only because Gibbs sampling is in fact a special case of the Metropolis Hastings
algorithm where the transition operators are chosen such that the acceptance probability is 1.
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The Dirichlet Process

Latent Dirichlet Allocation (LDA) algorithms are commonly used to create an unobserved
identity for certain items of interest using merely several useful variables. In the neural-nets
nomenclature and literature these variables are often referred to as features. LDA’s are for
example used to build a identity of series of documents in dynamic topic modelling as in
[Blei and Lafferty, 2006], to build the identity of users to detect fraudulent behaviour in telecom-
munications ([Xing and Girolami, 2007]), semantically annotate spatial data such as satellite im-
ages ([Lienou et al., 2010]) and more recently even phishing ([Ramanathan and Wechsler, 2013])
Although computer science and machine computing sciences have been quick to catch up,
Bayesian econometrics and statistics been developing its properties as a prior for mixture mod-
elling and methods of computation well ahead. Among others, see for example [Antoniak, 1974].

A common problem of traditional clustering methods are the fact that they often assume some
fixed number as the number of clusters to be obtained. For example, k-means algorithms
generally rely on a predetermined number of clusters, k. Values of k are then chosen based on
information criteria like in [Hansen and Yu, 2001] or the commonly used Bayesian and Akaike
information criteria. Another approach, following [Tibshirani et al., 2001], is relying in gap
statistics. Here I however approach the problem from a Bayesian perspective and more explicitly
let the data decide how many clusters there exist. As such, I follow the idea introduced by
[Ferguson, 1973] and [Rasmussen, 2000] in using a non-parametric Dirichlet process to account
implicitly for the uncertainty surrounding the number of clusters. Chapter 6 shows an imple-
mentation of these ideas relying on the implementation described in [Escobar and West, 1995].

In order to avoid going to much in detail from the start, this chapter introduces the concept
of the Dirichlet process. Following [Teh et al., 2005], it presents 3 different perspectives on the
Dirichlet process, that provide a deeper understanding about the ideas and the distributions for
the reader.

3.1 Stick Breaking Construction

It was established by [Ferguson, 1973], and made explicit by [Sethuraman, 1994], that measures
drawn from a Dirichlet process are discrete with probability one. We can define a stick-breaking
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process as independent sequences of random variables (π′k)
∞
k=1 and (θk)

∞
k=1:

π′k|α0, G0 ∼ Beta(1, α0) θ|α0, G0 ∼ G0 (3.1)

Defining the random measure G as:

πk = π′k

k−1

∏
l=1

(1− π′l) G =
∞

∑
k=1

πkδθk (3.2)

Where δθk is a probability measure concentrated at θ. According to [Sethuraman, 1994] G then is
a random probability measure distributed according to a Dirichlet Process: DP(α0, G0).

From the stick-breaking analog we can deduce that ∑∞
k=1 πk = 1 with probability one, and

therefore π is a random measure on the positive integers. Furthermore, note that G, a random
measure, is again distributed above according to some random measure random probability
measure DP(α0, G0), implying that the Dirichlet process is a distribution over distributions. This
is a convenient characteristic with respect to clustering, because the distributions of cluster-
locations and observation-allocations highly depend on the number of clusters. It requires thus
a distribution over the number of clusters and hence a distribution over distributions.

3.2 The Chinese Restaurant Process

The polya urn scheme introduced by [Blackwell and MacQueen, 1973] shows an intriguing in-
terpretation of the Dirichlet process as well. Let A denote the initial number of urns and denote
αi ∀i ∈ [0, k] the number of balls in each urn. The polya urn scheme then assigns incoming balls
to one of the existing urns with a probability measure depending on the number of balls in each
urn, or to a new urn with some positive probability.

A different interpretation of the Polya Urn scheme is given by [Aldous, 1985] and known as the
chinese restaurant process. Let θi be infinitely large round tables in a infinitely large Chinese
restaurant. Customers φi arrive at the restaurant and take seats according to the current seating
of φ1, ..., φi−1. We can then express the distribution as:

φi|φ1, ..., φi−1, α0, G0 ∼
K

∑
k=1

ηk

i− 1 + α0
δθk +

α0

i− 1 + α0
G0 (3.3)

Where the second term denotes the probability of customer φi taking a seat on a new table and
ηk the number of customers on table θk.

Fig. 3.1: Depiction of the Chinese Restaurant Process from [Teh et al., 2005]
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Figure 3.1 illustrates both the applicability to clustering of the Dirichlet process as well as a pos-
sible problem; generally the polya urn/chinese restaurant schemes imply a certain attractability
of larger collections (urns or tables). The richer get rich property. Depending on G0 and α0, it is a
common problem that larger tables tend to get larger faster than smaller tables. As such, there is
a tendency of customers to sit on the larger tables. Similarly for clustering, larger clusters tend
to have a higher attractibility the smaller clusters and thus make the formation of clustering
whole datasets into 1 cluster more likely. Trivially, both the result of 1 cluster and the number of
clusters equal to the number of observations are not particularly useful.

3.3 Mixture Models

A common application of the Dirichlet process is a nonparametric prior distribution on the
components of a mixture model as in [Antoniak, 1974]. Let L denote the number of mixture
components and π = (π1, ..., πL) the mixing proportions. We place a Dirichlet prior on π with
symmetric parameters (α0/L, ..., α0/L). Let θk be the parameter vector associated with mixture
component k and let θk have prior distribution G0. Drawing an observation xi from the mixture
model involves picking a specific mixture component with probability given by the mixing
proportions. Let zi denote that component. Following [Teh et al., 2005] we thus have the model:

π|α0 ∼ Dir(α0/L, ..., α0/L) zi|π ∼ π

θk|G0 ∼ G0 xi|zi, (θk)
L
k=1 ∼ F(θzi)

(3.4)

For clustering, the mixture model is applicable as well. Denote πi ∈ [0, 1] constrained to πi ∈ Z

and ∑L
i=1 π1 = 1. Then automatically the mixture clusters the observations. Analogously,

we can relax the integer assumption and continue assigning observations to clusters based
on probabilities or fuzzy logic clusters. See for example [Yang, 1993] for a survey on fuzzy
clustering. In our case, the fuzzy clustering would vastly increase the flexibility and reduce the
interpretability. I would also shift the focus to the number of clusters instead of the clustering
itself. Furthermore, fuzzy clustering relies on slightly different probability interpretations which
are not directly compatible with the Dirichlet process nor Bayesian methodology of this thesis.
All in all, fuzzy clustering could be interesting, but would complicate the model and underlying
mathematics too much.

3.4 The Dirichlet Process

Suppose an observation yi follows a given distribution F with parameters φi. Then a Dirichlet
process is defined by the following model:

yi|φi ∼ F(φi)

φi|G ∼ G

G ∼ DP(α, G0)

(3.5)
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To obtain a representation of the prior distribution of the φi in terms of successive conditional
distributions, integrate over G:

φi|φ1, ..., φi−1 ∼
1

i− 1 + α

i−1

∑
j=1

δ(φj) +
α

i− 1 + α
G0 (3.6)

Where δ(φ) is the distribution concentrated at the single point φ. G0 is a base distribution with
the same support as the random probability measure G, whereas α can be interpreted as a
positive parameter indicating the precision of the base distribution.

Using the stick breaking process we can generate samples from the Dirichlet process easily.
Iteratively we break a part βi of the remaining the stick of length wi−1. Then:

wi = βi

i−1

∏
j=1

(1− β j) (3.7)

Where β1 ∼ Beta(1, α). If we continue iteratively breaking the stick in this manner and if
wi ∼ G0 then:

P =
∞

∑
i=1

wiδwi ∼ DP(α, G0) (3.8)

For a simulation, take G0 standard normal and for α = (10, 50). Then notice that the Dirichlet
Process converges to the base distribution G0 as α→ ∞.

Fig. 3.2: Dirichlet Process CDF in comparison to the Standard Normal CDF

With respect to clustering, a larger α indicates that the model will tend towards more clusters.
In terms of the chinese restaurant process, it will be more likely that a newly arrived customer
will take a seat at a empty table.

As we are interested in clustering, our goal is to find values for φi such that a clustering is
established. However, we do not particularly know what form a cluster should have nor
whether the data is a priori separable. These issues are adressed in next the chapters.
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Local Level Model and Kalman Filter

The Kalman filter is an estimation technique that relies on an assumption of unavailability of the
true value and attemps to estimate the true value by a proxy that we can observe. As such, it uses
a measurement to gain insight about the unobservable state, given a certain model. Depending
on the choice of the parameters, it filters out a part of the volatility of the measurement and ob-
tains a more smoothed curve, as it decomposes the data in a local level plus additional noise. The
unobserved states can be seen as a stochastic trend underlying the behaviour that is witnessed.
As I make use of the Fama and French industry portfolios, I am directly using the fluctations of
large group of stocks over time to gain an insight in the clustering over time. Generally, it is likely
that stock data follow a volatile path characterized by volatile periods. In order to stabilize that
aspect of the data, a Kalman filter is a good option as it trims down extreme stochastic behaviour.

The reason to believe that there exists a certain degree of noise in the data is multitude. The
most convincing argument is the fact that it is impossible to quantify the changes in stock value
as calculated by the investor in terms of actual intrinsic company value. But that makes sense as
well. Stocks have more usage for investors than simply as investment vehicles. Among others,
there is simple speculation, risk hedging, portfolio construction and rippling effects within the
market only exacerbate the effect. Therefore, in order to avoid clustering stochastic behaviour
instead of underlying dynamics as described by the local levels, I apply the Kalman filter.

4.1 Kalman Filter

Denote yt as the observed variable at time t and at as the state variable at time t. Then the local
level model is specified as:

yt = Ztat + et

at+1 = Ttat + Rtwt
(4.1)

With et ∼ N(0, Ht) and wt ∼ N(0, Vt). It is necessary to specify the parameters Zt, Tt, Rt, Ht, Vt

beforehand.

Using these parameters we can then iteratively estimate values one step ahead as more infor-
mation enters the system. Let the observations up to time t be known and let the states be
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constructed up to time t using those observations as well. E.g. two series, (yi)
t
i=1 and (ai)

t
i=1 are

known. Then the Kalman filter can be applied in a two-step procedure. The first step consists
of prediction (at+1, vt+1), where vt+1 = yt+1 − Zat+1, e.g. the realized error. The second step
then consists of an updating step. Denote ât as the mean of the estimated state and P̂t as the
estimated variance, Pt, at time t. The algorithm then can be summarized as follows:

Algorithm 2 Kalman Filter Update Step

Require: (yi)
t
i=1 and (ai)

t
i=1

1:
2: Prediction:
3: ât+1 = Tat
4: P̂t+1 = T′PtT + R′VR
5: vt+1 = yt+1 − Zât+1
6: Ft+1 = Z′P̂t+1Z + H
7:
8: Updating:
9: Kt+1 = P̂t+1ZF−1

t+1
10: at+1 = ât + Kt+1vt+1
11: Pt+1 = P̂t+1 − Kt+1ZP̂t+1

Where Ft denotes the estimated variance of observation error at time t and Kt the Kalman gain.
The Kalman gain is the relative weight given to the measurements and current state estimate.
With a high gain, the filter places more weight on the most recent measurements and thus
follows them more closely whereas a lower gain implies that the filter follows the predictions
more closely. This implies that the lower the Kalman gain, the less responsive the state will
be to noise in the observations. Thus, depending on how accurate the observations are, the
parameters should be adjusted accordingly.

Note that the Kalman filter requires initial values for a and P. The literature on this is broad, but
if we fix the parameters over time, as I already did in algorithm 2, P converges to a stable value.
See also figure 4.2. Furthermore, after a burn-in phase, a will be "stochastically stable" as well.

In the end, the Kalman filter thus results in a serie of smoothed states. For example, taking
the observation of the Fama and French portfolio of the agriculture industry and setting the
variables such that Z = T = R = V = P0 = 1, a0 = 0 and H = 10, meaning that the observation
is much noisier than the state, the result of applying the Kalman filter is shown in figures 4.1 and
4.2. Vica versa, if the variance of the state, V, is much higher than the variable of observation,
H, and keeping all the parameters fixed again, the state is much noisier than the observation.
Meaning that we can actually do best by taking the observation as the state. With V = 10, H = 1,
ceteris paribus, one obtains the results as depicted in figures 4.3 and 4.4.
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Fig. 4.1: Example of Kalman Filter on the Agriculture Portfolio of Fama and French

Fig. 4.2: Converging Unobserved Variance of the State
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Fig. 4.3: Example of Kalman Filter on the Agriculture Portfolio with Volatile States

Fig. 4.4: Converging Unobserved Variance of the State, Volatile States
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The 2-step Procedure

5.1 Escobar and West, 1995

In order to formulate a Bayesian model for clustering, it is necessary to overcome the following
two issues:

1. Where are my clusters located and how do they look like?

2. How are the observations allocated over the clusters?

In order for the first one to fit within the Bayesian framework as introduced in Chapter 1, it is
convenient to approach it from a probabilistic point of view. That is, we can view the clustering
as a mixture model of normal distributions, where each individual normal distribution of the
mixture denotes a cluster. Then, the mean corresponds to the center of the cluster and the
variance to the size of the cluster. In higher dimensions, the covariances then correspond to
the symmetry of the boundary of the cluster. I write boundary, but actually there is no phys-
ical boundary as with ordinary clustering. The further away from the center of a cluster, the
likelihood of belonging to that normal, that cluster, reduces. This is not so much of a drawback
and it can be related to the second part fairly straightforward. For the second part, I make use
of the Dirichlet Process as introduced in Chapter 3. In the case where a certain observation
is significantly far from a center of a certain cluster, the Dirichlet Process is able to put a low
probability of belonging to that cluster and a higher probability of belonging to a closer cluster
or perhaps even starting a new cluster with a center nearby that specific observation.

I use the normal-inverse-gamma prior to describe clusters. If the center of that cluster lies further
away from the observations of the clusters, it becomes more likely that observations tend to
break of from the cluster and join other nearby clusters. As such, those clusters that remain
have achieved prominence within the set of observations and likely have their center close
to several observations. The variance I either picked by hand or allowed to be such that the
variance describes a bound of the cluster. Depending on the distribution of the observations, it
might be more likely to actually fix the variance. If the clusters are nicely separable, letting the
observations decide the circumference of the clusters makes sense. However, if they appear to
be hardly separable it makes more sense to force the cluster size to be fixed in order to prevent
the clusters from growing significantly large and thereby encompassing a larger than reasonable
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part of the observations. See also the results in Chapter 6.

Forcing the variance, or the probabilistic size, of the cluster to be fixed is in essence not an
objective thing to do. However, it can be that certain outliers obscure the difference between
other observations. If there is one observation that is significantly far away from the others, it
will appear as if the others are fairly close. But if the outlier is deleted from the dataset, the
relative difference between the observations becomes less apparent and clustering might be
more succesful. In the other case, tweaking of the underlying parameters, such as the parameters
that define a cluster, might be a solution. Both the presence of outliers and hardly separable data
might have profound effects on the effectivity of clustering the data and in turn may lead to
speculation about the robustness of many clustering algorithms.

Firstly this section introduces the methodology as explained in [Escobar and West, 1995], stick-
ing to the naming of the parameters as well. I follow it closely in terms of implementation, but
deviate slightly here and there, which this section explains later.

Given an assignment π−i′ of observations−i to clusters, the assignment of observation i, denoted
as πi follows a Dirichlet Process prior as introduced in previous chapters. Which yields the
conditional posterior:

πi|πi−1 ∼ αq0Gi(πi) +
n

∑
j=1,j 6=i

qjδπj(πi) (5.1)

This can be denoted as DP(α, q0G0). Gi(πi) denotes the distribution of a certain cluster. E.g. it is
the prior distribution that represents the believe we initially have about the structure of a cluster
in terms of location and size. As such, given a set of observation that are clustered together, e.g.
forming a cluster named i, let the prior of the cluster be defined as a bivariate normal-inverse
gamma distribution:

V−1
i ∼ gamma

(1 + s
2

, S +
(yi −m)2

1 + τ

)
µi|Vi ∼ N

(m + τyi

1 + τ
,

τ

1 + τ
Vi

) (5.2)

The parameters in this prior have to be specified beforehand. τ denotes a measure of believe we
have in the accuracy of our prior. For τ → 0:

limτ→0V−1
i ∼ gamma

(1 + s
2

, S + (yi −m)2
)

limτ→0 µi|Vi ∼ N(m, 0)
(5.3)

And for τ → ∞:

limτ→∞ V−1
i ∼ gamma

(1 + s
2

, S
)

limτ→∞ µi|Vi ∼ N(yi, Vi)
(5.4)

Thus, a lower τ states that our prior is very trustworthy, whereas a higher τ denotes that we
have more confidence in the data. As such the relative effects of prior and data can be mediated.
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Next to that the other parameters represent the usual input for the NIG prior. That is with s and
S as location and scale parameter, respectively, of the inverse gamma distribution characterizing
the size of the cluster. m is a prior value describing the location of the cluster. Due the symmetry
of the normal distribution m represents also a believe on the value of the center of the cluster.

The weights (q0, qj) are defined as:

q0(s, S, m, yi, τ) ∝ c(s)
[1 + (yi −m)2

sM

]−(1+s)/2
M−1/2

qj(yi, µj, Vj) ∝ exp
(
− (yi − µj)

2/2Vj

)(
2Vj

)−1/2
(5.5)

Where:

c(s) =
Γ
(

1+s
2

)
Γ(s/2)

s−1/2

M = (1 + τ)S/s

(5.6)

The question still remains how to set up δπj(πi). In [Escobar and West, 1995] it is stated that
it denotes a point mass at πi = πj. Although not concrete, from the Dirichlet distribution
it becomes apparent that it should be interpreted as a probability distribution over the other
clusters. This is most congruent with the first part of the equation as the first part denotes the
probability that πj will start the existence of a new cluster. Actually, another representation in
[Escobar and West, 1995] provides more clarity:

πn+1|π ∼
α

α + n
Ts(m, M) +

1
α + n

k

∑
j=1

njN(µ∗j , V∗j ) (5.7)

Where Ts is the student T distribution and the second part of the equation denotes the mixture
of existing clusters (µ∗j , V∗j ). Note how nj explicitly brings the "rich-get-richer"-characteristic of
Dirichlet Processes into the model.

Using the model given by [Escobar and West, 1995] as a guiding example, I can now properly
introduce the implementation of the model. Because the goal eventually is to use these models
to analyse the clustering behaviour of stock data, as argued before it seems intuitive and logical
to focus on the local levels. In order to do so, there are essentially 2 ways we could go. The first
consists of a 2-step procedure, which is also the one this section turns to.

5.2 Multivariate Extension

A common attribute of stock data is the strong autocorrelation. As I aim to cluster the data per
time-window in order to gain insight in the driving dynamics, it is necessary to open up the
possibility to use a multivariate extension of the model of [Escobar and West, 1995]. A side of
theoretical issues, in practice it appears often hard to cluster in one dimension. It is for example
common in support vector machines to make use of kernels that decompose the data into many
dimensions. As such, the data gains separability and clustering algorithms perform better. In a
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similar fashion one can add dimensions to the data to allow for that separability. If the data is
characterized by a certain inseparability, clusters, especially if we allow the data to decide how
many clusters there are, tend to merge into one or more giant clusters. The same observation
was made by [Escobar, 1994], which coined "clumpiness" to describe separability and sparsity
as its antagonist. The problem can be illustrated by the following example:

xi ∼


U[0.2, 0.3] if i ≤ 100

U[0, 1] if 100 < i < 600

U[0.7, 0.8] if i ≥ 600

yi ∼ N(xi, 0.25)

(5.8)

Figure 5.1 shows the results. If the data is characterized by a uniform density over domain, it
is hard to depict different clusters by hand. In this case the data should be clustered together
evidently, but a practitioner seeking to cluster a dataset similar as in figure 5.1 will generally not
have the DGP readily available however, and might thus attempt to define multiple clusters in
the figure. In the simulation example, we know beforehand that the data is simulated from the

Fig. 5.1: Example of Hardly Separable Data

same source, however, if we map the observations to a density estimation, it becomes apparent
that there are two equally high peaks. But there hardly is a valley between those peaks, e.g.
the density is still quite high between them. In this case it would still be likely that whole set
would be fitted to one cluster, but if the transition between the peaks would more of a valley,
the question would become harder as it is exactly at those density-contours that the problem of
separability becomes an issue. In essence, the question thus comes down to; how to qualify the
interpeak observations.

Mathematically, the multivariate extension is readily available. However, extending the NIG
generally implies that Vi obtains a diagonal structure. This in turn implies that the shape of the
cluster will not tilt in terms of the axis of the individual dimensions, as existence of correlation
between them would allow a tilt. However, the t-distribution as in [Escobar and West, 1995] has
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to be altered slightly. [Kotz and Nadarajah, 2004] denote the pdf of a p-variate t distribution
with degrees of freedom v, mean vector µ and correlation matrix Σ:

f (x) =
Γ( v+p

2 )

(πv)pΓ(v/2)|Σ|1/2

[
1 +

1
v
(x− µ)TΣ−1(x− µ)

]− v+p
2

(5.9)

Where p = 1 leads back to the univariate case as in [Escobar and West, 1995].

5.3 2-step Model

In the first step of the model, the local level staes are obtained using a Kalman filter. Then the
states are used as input for the Dirichlet process with the NIG prior.

5.3.1 Kalman Filter Specification

Following equation 4.1

5.3.2 Clustering Implementation

Denote zi′ as the cluster to which observation i′ is assigned, e.g. a label (Similar to π in the
model of [Escobar and West, 1995]). Denote the total number of clusters as K. Let θ be the
parameters necessary for founding new clusters according to Dirichlet-Process-base-function
G0. Denote yk as a vector of observations that are in a certain cluster with label k and (µk, V k) as
the information those observation bring with regard to the cluster. In appendix A2 a derivation
of the Dirichlet process is presented. The model I use is a modification of that. The Dirichlet
process as in appendix A2 is given as:

P[θ|α] ∼ Dirichlet(α)

P[zi′ |θ] ∼ categorical(θ)
(5.10)

And more specifically as equation A.28:

P[yN |zN ]P[zN |z−N , α] = P[yN |zN = k : nk = 0]P[zN = k : nk = 0|z−N , α]

+ P[yN |zN = k : nK ≥ 1]P[zN = k : nK ≥ 1|z−N , α]

=
α̃

N + ∑K
k=1 αk − 1

G0 +
K

∑
k=1

nk

N + ∑K
k=1 αk − 1

Gk

(5.11)

I set up the following model:

yi′ = µi′ + εi′ with εi′ ∼ I ID(0, V k) (5.12)
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And further develop it by the following hierarchical structure:

P[yi′ |µi′ , V i′ ] = N(µi′ , V i′)

P[µi′ |zi′ , V i′ , τ] =

N(yi′ ,
τ

1+τ V i′) if zi′ = k : nk = 0

N(
mk+τyi′

1+τ , τ
1+τ V i′) if zi′ = k : nk ≥ 1

P[V i′ |zi′ , s, S, τ] ∼

IG( 1+s
2 , S) if zi′ = k : nk = 0

IG( 1+s
2 , (S +

(yi′−mk)
′(yi′−mk)

1+τ )/2) if zi′ = k : nk ≥ 1

P[zi′ |p] ∼ categorical(p) = Multinomial(1, p)

P[p|y−i′ , z−i′ , µ−i′ , V−i′ ] ∼ DP(ᾱ, G0)

(5.13)

Where:

mk =
1
nk

∑
j:zj=k

yj (5.14)

Note that yi′ is also included, as it is already allocated to cluster k at this stage. Therefore, if
nk = 0, τ is not present in the term that defines the mean distribution. It is not hard to see why:

mk + τyi′

1 + τ
=

yi′ + τyi′

1 + τ
= yi′ (5.15)

5.13 and, notably, A.28/5.11 imply:

pk = E[1(zi′ = k)] ∝ ∑
j:zj=k

qj(yi′ , µj, Vj) ∀k ∈ [1, K] (5.16)

p0 = E[1(zi′ > K)] ∝ αq0(s, S, yi′ , m̂, τ) (5.17)

Note that due to the way how qj and q0 were defined in equation 5.5, where p0 denotes the
probability of starting a new cluster, it is necessary to constrain the sum of these probabilities as
equal to 1.

p0 +
K

∑
k=1

pk = 1 (5.18)

As in [Escobar and West, 1995], G0 is incorporated in q0 as in equation 5.5.

In the trivial case, Vk is a diagonal matrix en each element is modelled by a univariate inverse-
gamma. The multivariate extension of the inverse gamma is an interesting topic, but the
literature generally extends the inverse-gamma into an inverse-Wishart in order to model the
multivariate case.

Then for the next hierarchical layer find that:

P[zi′ |p] =
K

∏
i=0

p1[zi′=k]
k (5.19)

Obtaining:

P[µk, σk|zi′ ]P[zi′ |p] ∼ 1(zi′ = k : nk > 0)P[µk|zi′ = k : nk = 0, σk, τ]P[σk|zk = k : nk = 0, s, S, τ] +

K

∑
k=1

1(zi′ = k : nk ≥ 1)P[µk|zi′ = k : nk ≥ 1, σk, τ]P[σk|zk = k : nk ≥ 1, s, S, τ]

(5.20)
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With probabilities (5.16 and 5.17) as modelled by:

P[p|y−i′ , z−i′ , µ−i′ , V−i′ , s, S, m, τ] = αq0(s, S, yi′ , m̂, τ) + ∑
j:zj=k

qj(yi′ , µj, Vj) (5.21)

Note how m and yi′ are swapped in equations 5.21, 5.17 compared to 5.5. Whereas m denotes a
prior belief of the center of a cluster for a specific observation in 5.5, in the model and paradigm
I am setting up, it is more logical to let an observation belief that the location of a new cluster,
if it appears that it does not fit in with any of the other clusters, is somewhere close to itself.
Therefore the prior on the location of a new cluster should be close to the observation itself.
Contrastingly, the current location of the cluster that he is assigned to, in the Gibbs estimation
procedure, is located by m̂. Logically, this should be reflected in the probability of starting its
own cluster.

In order to avoid unnecssary complication, I take α as constant in this setting. This is however
quite common in the literature. α is taken as fixed, or following a gamma distribution with fixed
parameters, see [Escobar and West, 1995], in general. In the clustered correlations model α is
described by a prior distribution that changes over time and depends on previous distributions
and contemporary realizations.

In equation 5.16 the ’rich get richer’-property becomes apparent. As a cluster contains more
observations, it will be more likely that pk > pk′ . For some cluster k′ 6= k. Nevertheless, these
becomes most apparent in local settings. If a large cluster will be further away from an observa-
tion compared to a nearby smaller cluster, the effect will be less pronounced.

Note the similarity of 5.17 with the visualization algorithm t-distributed stochastic neighbour
embedding (t-SNE) as described by [Maaten and Hinton, 2008], as well as the similarity of
5.16 with SNE as described before by [Hinton and Roweis, 2003]. The difference between the
two is that SNE assumes a normal- where t-SNE assumes a t-distribution. These algorithms
decompose high-dimensional data into lower dimensional clustering based using a t- or a
normal-distribution, respectively, as a similarity measure. As these algorithms already know
the clustering in advance, the objective and complexity of the task is completely different, but
the inner workings are similar nonetheless. Basically, they describe for each observation its
surrounding cluster and add observations to that cluster if its p-value corresponding to a t-
or normal-distribution, respectively, is sufficiently high. By letting the variance parameter
free, they succeed in allowing the cluster to be of data-dependent size. Most notably t-SNE
has been met with much appraisal, including a comfortable place within contemporary data
mining and machine learning courses as well as the Merck Viz price 2012 1, awarded by Kaggle
(an enormous online datascience community recently bought by Google, including members
of IBM’s Watson and Google’s Deepmind). Only at the end of writing I was notified by this
mild similarity. The difference should be clear too. In this setting, I make use of a t- and
normal-distributions to bayesionally quantify the tendency of observations to cluster together,

1http://blog.kaggle.com/2012/11/02/t-distributed-stochastic-neighbor-embedding-wins-merck-viz-
challenge/
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while modelling the cluster locations and sizes as stochastic as well. Furthermore, the objec-
tive is very different and the giants upon whom I stand are of a more (Bayesian) statistical nature.

It is important to point out as well that the clusters are not modelled directly. Although the
vector z accounts for partitioning the observations in clusters, the size and location of the clusters
are not modelled or used to in the partitioning. Instead, each observations formulates a belief
about the location of the cluster it is assigned to given the other observations in that cluster.
From the sum of those beliefs we can then infer the location of the cluster simply by summing
over the individual normal-inverse-gamma probability density functions. As such, the certainty
surrounding the location of a cluster is larger once more observations join it.

The model is estimated by algorithm 3. As mentioned before, allowing too much freedom for
the data to decide how large a cluster should be, might cause unwanted results. That is, the data
being clustered into one or several gigantic clusters. Algorithm 4 implements a fixed variance V,
by minimally altering the algorithm, that might be used to overcome this problem.

Algorithm 3 Gibbs Sampling Estimation Implementation, Cluster Variance Random

1: Let z0 denote an initial partition of observations into clusters
2: Let µ0 denote a vector of initial cluster means for each observation
3: Let V0 be a matrix of initial cluster variances and covariances for each observation
4: Let N denote the total number of iterations in the Gibbs Sampling procedure
5: for ∀i ≤ N do
6: µi,. = µi−1,.; V i,. = V i−1,.; zi,. = zi−1,.
7: for ∀i′ ≤nr of variables do
8: Set Up Probabilities
9: pk = ∑j′ :zj′=k qj′(yi′ ; µi,j′ ; V i,j′) ssl (Probability of assignment to cluster k)

10: p0 = αq0(s, S; yi′ ; µi−1,i′ ; τ) (Probability of assignment to new cluster)
11: [p0; p1; ..., pK] =

1
∑k pk+p0

[p0; p1; ...; pK]
12: Determine Transition
13: zi,i′ ∼ Categorical(p = [p0; p1; ..., pK])
14: Update parameters µi,i′ , Vi,i′

15: if zi,i′ == 1 then (Assign it to a new cluster)
16: Vi,i′ ∼ IG( 1+s

2 , S)
17: µi,i′ |V i,i′ ∼ N(yi′ ,

τ
1+τ V i,i′)

18: else (Assign it to an existing cluster k)
19: mk =

1
nk

∑n:zn=k yn

20: Vi,i′ ∼ IG
(

1+s
2 , S +

(yi′−mk)
′(yi′−mk)

1+τ

)
21: µi,i′ |V i,i′ ∼ N(mk, 1

1+τ V i,i′)

Output: ∀i): µi,.; V i,.; zi,.
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As the algorithm above is extended in further chapters, it is of vital importance to understand
the algorithm, and specifically the labels, above. As such, note that i denote the iterator that
loops over the number of Gibbs sampling steps that are ought to be performed. Within each
iteration of this loop, we update each of the variables given the other variables. In order thus to
loop over the variables of interest, I manufacture the indicator i′ to keep track of this. As such,
zi,i′ specifies the cluster observation i′ belongs to in iteration i. In line 9, I implicitly loop over
the clusters that already exist using indicator j′ and labelling of clusters using indicator k. As
such ∑j′ :zj′=k qj() denotes the sum of individual probabilities of assigning observation i′ to the
same cluster k as observation j′ belongs to. The reason for the sub-optimal nomenclature for the
indicators, iterators and labels is because it allows me to preserve a logical connection between
this algorithm and later algorithms that extend it.

As y denote the observations, these do not require a decomposition as µ, V and z require.

Algorithm 4 Gibbs Sampling Estimation Implementation, Cluster Variance Random

1: Let z0 denote an initial partition of observations into clusters
2: Let µ.0 denote a matrix of initial cluster means
3: Let V0 be a matrix of initial cluster variances
4: Let N denote the total number of iterations
5: for ∀i ≤ N do
6: µi,. = µi−1,., V i,. = V i−1,., zi,. = zi−1,.
7: for ∀i′ ≤nr of variables do
8: Set Up Probabilities
9: pk = ∑j′ :zj′=k qj′(yi′ ; µi,j′ lV i,j′) ssl (Probability of assignment to cluster k)

10: p0 = αq0(s, S, yi′ , µi−1,i′ , τ) (Probability of assignment to new cluster)
11: [p0; p1; ...; pK] =

1
∑k pk+p0

[p0; p1; ...; pK]
12: Determine Transition
13: zi,i′ ∼ Categorical(p = [p0; p1; ...; pK])
14: Update parameters µi,i′ , Vi,i′

15: if zi,i′ == 1 then (Assign it to a new cluster)
16: Vi,i′ = V
17: µi,i′ |V i,i′ ∼ N(yi′ ,

τ
1+τ V i,i′)

18: else (Assign it to an existing cluster k)
19: mk =

1
nk

∑n:zn=k yn
20: Vi,i′ = V
21: µi,i′ |V i,i′ ∼ N(mk, 1

1+τ V i,i′)

Output: ∀i): µi,.; V i,.; zi,.
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5.3.3 Greedy MAP as solution to the MAP Problem

When attempting to make sense of the obtained posterior distribution using Gibbs sampling
by defining the modes, it is apparent that it is not possible to make use of the cluster allocation
directly. First of all, because of some form of the label switching problem. There is no guarantee,
within the algorithm, that clusters that pop up during the sampling procedure are that do not
have different do not actually represent the same cluster. This merely comes from the fact that
clusters are stochastically pop up and are deleted. This renders the use of the labels z, not
particularly useful, after the simulation. However, it is more useful to derive a Maximum A
Priori clustering by using the frequencies with which 2 observations are clustered together
throughout the sampling procedure. Nevertheless, it is known that complex posteriors tend
to yield the MAP problem, or, more bluntly, suffer from intractable MAPs. This problem has
been accounted in the literature, see [Raykov et al., 2014] and [Broderick et al., 2013], however
solutions focus on adjusting the Gibbs sampling procedure. This gives rise to quite a complex
high-dimensional probability distribution of the system. The problem that hitherto arises is how
to quantify those results, the probabilities, into actual clusters. For example, consider a fictional
result as in table 5.1: Observation 1 has a high probability to cluster with 2,3 and 4. However,

Table 5.1: Gibbs Probabilities of Clustering together observations

Observation 1 2 3 4
1 1 0.9 0.9 0.7
2 0.9 1 0.7 0.2
3 0.9 0.7 1 0.2
4 0.7 0.2 0.2 1

both 2 and 3 seem to have a low probability to be clustered with 4. The example exagerates
the problem, but it should be clear that from these probabilities that one should be careful
with regard to summarizing the posterior in a few statistics. Nevertheless, popular are both
the Maximum A Priori (hereinafter MAP), which is simple and popular, and the last partition
revisited, which is surprisingly often used in LDA’s. However, in this case it is not possible to
sort the probabilities and accordingly define clusters. As with the example, it is questionable
whether there exist two clusters, namely (1,2,3) and (4), or one larger cluster (1,2,3,4). In order
to make sense of those distribution, one would like to obtain the MAP in this scenario. But
that is however a bit more complex as such a MAP only makes sense if the it does not violate
some form of transitivity. That is, if 1 and 2 are clustered together, as well as 2 and 3, than it is
necessary that 1 and 3 are clustered together as well. In order to adhere to these principles and
obtain an image of the posterior, I propose to make use of a greedy MAP procedure setting up a
probability matrix that describes ∀i, j whether observations yi and yj are in the same cluster. As
far as I know, there does not exist an account within the literature currently of this procedure.
Using a lower bound in terms of probability needed to define a cluster, we can then set up those
clusters. Then, by lowering the bound, iteratively we find new strong connections between
the observations and either add them to existing clusters or put them together in a new cluster.
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Once clusters grow bigger in this procedure, it becomes harder to join it as for a observation to
join a cluster it needs to have connection stronger than the current lower bound with each of the
current cluster occupants. Schematically, the greedy MAP procedure can be summarized as:

Algorithm 5 Greedy MAP to convert posteriors to clusters
Input: Plowerbound, Pmin, Pstep

1: while not all yi assigned to clusters And Plowerbound > Pmin do
2: for all i, j do
3: if Pi,j > Plowerbound then
4: if Czi = 0 and Czj = 0 then yi and yj in new cluster: zi = zj = max C + 1

5: if Czi = 0 and Czj > 0 then
6: if ∀ yk ∈ Czj : Pk,j > Pmin then Assign yi to cluster: Czj : zi = zj

7: if Czi > 0 and Czj = 0 then
8: if ∀ yk ∈ Czi : Pi,k > Pmin then Assign yj to cluster: Czi : zj = zi

9: Pmin = Pmin − Pstep

10:

Where zi denotes the cluster label of observation yi and C the collections of clusters.

It is important to note that the greedy MAP algorithm does not change the underlying distribu-
tion, but is merely a tool to obtain an actual clustering that can be used to construct an image of
the distribution and to further assess the performance of the model with this data for several
different values for the underlying (hyper)parameters, which are discussed in the next chapter.
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2 Step Procedure Results

In order to showcase the results that can be obtained from the methodology as described in the
Chapter 5, this chapter first introduces the Fama and French data set that is used. For these
observations of stock portfolios, the model is tested for several hyperparameter-settings. The
values of the hyperparameters in the Kalman filter remain unaltered as introduced in Chapter 4,
whereas the values of the parameters in the secondary Bayesian clustering step are one-by-one
adjusted to analyse the sensitivity of the model. The results with several values for the hyperpa-
rameters can be found in the appendix C. Both the greedy MAP procedure, as introduced in
section 5.3.3, as well as a last partition revisited are employed to obtain visuals. Although the
underpinning of the model is intuitive, it appeared that optimal tunage of the hyperparameters
is vital. For this particular dataset, robustness of the model should be largely rejected.

6.1 Data 2-Step Model

The data consists of 49 different industry groups and is part of the Fama and French dataset, avail-
able at their website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html. These industry groups are observed monthly starting from July 1926.
Because some industries came into existence after the starting date, it is convenient to drop the
observation before. That appears to be July 1969. At the moment of obtaining the data, the end
date was October 2017. There are thus 580 monthly observations of the 49 portfolios without a
single gap in the data. As for the time-window used, although there are many options, I have
decided to take a time-window of length 6 starting at the 26th observation, which happens to
be the timewindow: september 1971 - Januari 1972. This timewindow is convenient because it
shows a certain degree of separability as well as series that tend to have similar dynamics.

The starting dates per industry as well as the industries themselves can be found in appendix B.

Note that in all of these plots colors correspond to clusters. As such, when series have identical
colors, they are in the same cluster. Because the colors are chosen as random and the colors might
be overlapping or hard to depict with the naked eye, the number of clusters is also depicted in
the appendix B.
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6.2 Results for Different Hyperparameter Values

6.2.1 Default Parameter Values

The Kalman filter (Chapter 4) was applied with parametrization:

Z = T = R = H = V = 1

H = 10

a0 = 0

P0 = 1

(6.1)

For the model:

yt = Zat + εt, εt ∼ N(0, H)

at+1] = Tat + Rwt, w[t] ∼ N(0, V)
(6.2)

Then the hyperparameters of the second step are set as:

s = 0.05

S =
diag(colStdevs(y))

10
τ = 2

m = colMeans(y)

Niter = 1000

α = 0.001

V̄ = mean(diag(S))

(6.3)

Whereas Niter denotes the number of iterations and V̄ denotes a fixed estimation of the param-
eter Vi in model 5.14. This might be necessary in order to constrain the size of the clusters.
Otherwise the nature of the observations might force the number of clusters to converge to 1. A
less meaningful result. Evidently, this is tested for as well.

To understand the effect of the parameters and obtain a rough analysis of the performance, the
parameters (α, s, S and τ) are slightly altered. Next to that the model as stated in the previous
chapter without fixing the variance V is estimated as well. The greedy MAP (section 5.3.3) and
the last partition revisited results are displayed for all these submodels.

6.2.2 Varying α, figures C.3 - C.6

The results in section C.2 indicate that the effect of α is quite strong. Multiplying and dividing
the default value by 10 increases the number of clusters significantly whereas downsizing has
the opposite effect. Higher alphas increase the likeliness of the foundation of new clusters.
Therefore these results should not be too surprising. It is however interesting that we require
the value for α to be so low, as this implies that the prior has a small effect on the predictive
distribution. In other words, the prior is not very informative in general, but large deviations
might have strong effects on the clustering results.
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6.2.3 Varying s, figures C.7 - C.10

If V was not fixed to a certain value, s would have had a more profound effect. In this case,
however, s only is used in modelling the probability for a certain observation to set up its own
cluster (5.17). In fact, an increase in s, increases this probability as well. This is due to the fact
that this measure assesses the fit of a certain observation and the cluster it currently is allocated.
Larger values for s tend to stretch out t-distribution, as it parametrizes the degrees of freedom.
Whether this is wanted or not depends in turn on the data and the tuning of the other parameters.

This is apparent from C.3 as well. Images C.7 and C.8 show the increased difficulty of the
simulation process to allocate with certainty, whereas C.9 and C.10, with s equal to 5e − 04
instead of 5, observations that lie close together tend to find each other within clusters with
greater ease.

6.2.4 Varying S, figures C.11 - C.14

From the results in appendix C.4 it becomes apparent that S has a profoundly different effect,
as compared to s. Equation 5.5 shows this as well. That is, inflating S by a factor 100 forces
the clusters to cascade into 1 large cluster. Vica versa, decreasing S by a factor 100 breaks the
clustering the other way around as it clusters 49 portfolios into 31 and 33 clusters, for greedy
MAP and last partition revisited respectively. As such the robustness hinges most strongly on a
proper tuning of S, in this default setting. A larger S indicates that the algorithm favors rather
large clusters, an observation denoted by [Escobar and West, 1995] as well.

6.2.5 Varying τ, figures C.15 - C.18

τ indicates the degree of confidence one has in the accuracy of the prior. From appendix C.5
it becomes apparent that a greater confidence in the prior in turn leads to a lower number or
clusters. In essence, from judging the plots alone the performance of the algorithm in terms of
discerning clusters seems to be most promising for figures C.15 and C.16, with τ = 200. Next to
that, note that the effect of blowing up τ has less of a pronounced effect as well.

6.2.6 Conclusion

Although the model has decent intuition complemented by the possibility to cluster observa-
tions in a fully Bayesian fashion, the performance seems to be questionable for this dataset. An
appropriate degree of robustness seems hard to be attained, which is problematic if it is not
straightforward to set the values of the hyperparameters. Next to that, solely with these results it
is difficult to pinpoint the reason the simulation procedure has obtained a certain clustering, nor
whether it obtained the complete posterior density. For example, the Gibbs sampling procedure
could encounter strong competition among clusters and get stuck at a sub-optimal optimum
where a multitude of clusters are competing for survival. However, instead of competing for
survival, it could similarly be the case that the clusters are actually stable but tiny. Solely from
obtaining the allocations, this remains hard to tell. Whereas [Escobar and West, 1995] notes that
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nonparametric empirical Bayes have limited performance, I do not find enough evidence to
refute that statement from these results.

Finally, one of the strongest part of this algorithm is that it allows to model the whole distribution
instead of a single or several points. It is therefore inconvenient that the resulting posterior
attains such a complexity that requires one to focus solely on several noteworthy aspects of
that solution. As such, this model might inhibit an intriguingly better performance than the
particular sample of results that I could obtain in appendix C. It might be the case that the
proposed Greedy MAP procedure (section 5.3.3) as well as last partition revisited appear to
be sufficient to display the information withheld from the posterior, but that is something that
remains to be seen. Being able to set up a distribution that describes all the interactions and
dynamics is great, but being able to effectively evaluate seems not to be straightforward.
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Evolutionary Clustering and Shift to
Variance-Covariance Matrix Modelling

Whereas the previous chapter dealt with picking the clusters on individual time-windows,
it seems valuable to extend the model to incorporate relations spanning the time dimension
as well. Although the Bayesian clustering model is intuitive and performs well, this cannot
be said about the methods that are available to further translate this into actual clustering
in the time domain. The hard part of translating the distributions obtained from the Gibbs
sampling procedure into actual clusters over time is that first of all these distributions have to
be summarized into a certain clustering in order to visualize this later. An even harder problem
is making sense of the individual time-snap-shots. How to connect these distributions in a
meaningful way across the time-domain? Is it even possible to derive a meaningful relation
from this construction? At this point of my thesis, I started to wonder whether usage of clusters
makes sense and how to proceed to scale the previous model. At such a point, one should ask
him- or herself whether there even is a reason to stay on the path one was on. Furthermore it is
questionable whether clustering subsequences of time series have any added value in analytics.
An interesting article and fun read, [Keogh and Lin, 2005], strongly doubts its performance
and attemps to prove its claim: "Clustering of time-series subsequences is meaningless". They
state that cluster extracted by any clustering algorithm are essentially random due to being
forced to obey certain defining pathological constraints. As the paper continues its argument,
it shows that the obtained results from any clustering algorithm on subsequence time series
are not the consequence of properties of stock and market data, but more likely due properties
of the sliding window feature extraction. They find that clusters found by cluster algorithms
are not significant more similar to each other than they would have been to a clusters centers
derived from a random walk. As such they denote the clustering of time-series meaningless
because the output of said algorithms is independent of the input. The consequence is that one
cannot bluntly apply clustering techniques without taking into account the inherent properties
of time series. Therefore, any clustering algorithm should not heavily depend on the clustering
of subsequences of time series.

In conclusion, in order to analyze the dynamics of a chaotic system such as the economy, it is
necessary to deviate from the path I headed on in Chapters 5 and 6. It is necessary to come
up with a more time-integrated version and model time-dynamics directly. In the literature
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there are various models offered, but a holy grail is yet to be found. This chapter concludes the
literature by firstly introducing several ideas that come from the clustering and data mining
fields, while explaining their shortcomings with regard to the task at hand. Then it introduces
more statistically grounded methodologies. Finally, it discusses how to proceed. In Chapter 8
several of the ideas are used either directly or as inspiration to create a model that does suffice
the criteria that are implicitly laid out in my considerations. That is, a model that efficiently
incorporates the clustering model of Chapter 5 and extends it into a time-dimensions while
adhering to Bayesian and statistical validity.

7.1 Direct Evolutionary Clustering

7.1.1 Minimizing loss functions

7.1.1.1 Agglomerative Hierarchical Clustering

The agglomerative hierarchical clustering starts with a cluster for each observation and a
similarity matrix between them. Then it selects those objects that have the highest similarity,
merges them into one cluster and recalcultates the similarity matrix. This is repeated until a
certain threshold is reached. By merging the object, the cluster is redefined as the average of
the objects. This is often visualized by a bottom-up binary tree whose leaves are the initial
observations. These leaves come together in branches, and these branches in larger branches,
that form in this analog the clusters. The final tree Tt is then clustering at time t. The goal is then
to find a clustering such that the historical cost is minimized (hc) and the accuracy of the cluster
sequence (sq) is optimized. Denoting a particular cluster at time t as Tt and a similarity matrix
as Mt, this then becomes for a total number of timewindows N:

max
C

N

∑
t=1

sq(Tt, Mt)− λ
N

∑
t=2

hc(Tt−1, Tt) (7.1)

For some nonnegative penalty λ.

7.1.1.2 K-Means

Another commonly used method in non-evolutionary clustering is the K-means method, which
relies on minimizing the within-cluster sum of squares:

arg min
µ

k

∑
i=1

∑
x∈Si

||x− µi||2 (7.2)

An extension of the methodology in the time-domain necessitates reformulating the objective
function by incorporating again a historic cost function in terms of the means of the clusters:

arg min
µ

T

∑
t=2

K

∑
i=1
||µi,t − µi,t−1||+

T

∑
t=1

k

∑
i=1

∑
xt∈Si,t

||xt − µi,t||2 (7.3)

Where the clusters are denoted by S = (S1, ..., SK)
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7.1.1.3 Organizing Maps

Finally, a well studied but less known methodology stems from the "Self-Organizing Map"
([Kohonen, 1998], SOM). The basic idea is to map data patterns onto a n-dimensional grid of
neurons or units. The grid that is formed during the process is known as the output space. If
we assume that each unit is a cluster center, and there are k units in total, then the same task
as k-means is performed by the algorithm. The algorithm is described by: During the training,

Algorithm 6 Self-Organizing Map

1: Let X be the set of observations: x1, ..., xn
2: Let W be a grid of units wij where i and j are their coordinates on that grid
3: Let α the learning rate, taking values in [0, 1]
4: let r be the radius of the neighborhoud function h(wi,j, wi′,j′ , r)
5:
6: while α > 0 do
7: for k = 1 to n do
8: for all do wi,j calculate dij = ||xk −wi,j||
9: Select wij that minimizes dij, denote it as wi′,j′

10: update: wi,j = wi,j + αh(wi′,j′ , wi,j, r)||xk − wij||
11: Decrease α and r

the SOM forms an elastic net that folds onto the input data. As such, it can be preserved as a
mapping from input space to a lower-dimensional grid of map units that preserves the topology.
Methods derived from SOM perform reasonably good in the cross-section domain and applica-
tions to evolutionary clustering are known, but have not been subjected to proper peer-review.
For an application to evolutionary clustering, see for example [Ramanathan and Guan, 2006].

7.1.2 Extending the Dirichlet Process

Another methodology considers a dependent Dirichlet process. Although there are quite some
implementations available, they can broadly be summarized by those that define a relation over
time via πt, as in the stick breaking construction, and those that do so by using G0. For example,
the Dirichlet Process Chain Model as introduced by [Xu et al., 2008a]. It uses a exponential
smoother for the transition between time-windows by defiing the cluster mixtuer at time t as:

πt =
t

∑
τ=1

exp
(
− η(t− τ)

)
πτ (7.4)

Which is then further illustrated and developed by defining a smooth prior weight for cluster k
at the beginning of time t as:

wt,k =
t−1

∑
τ=1

exp
(
− η(t− τ)

)
nτ,k (7.5)
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With nτ,k as the number of observations belonging to cluster k. Similar to the Chinese Restaurant
process, one obtains then:

P[zt,i = k|z] ∝


wt,k+n−i

t,k

α+∑K
j=1 wt,j+nt−1

if k is an existing cluster

α
α+∑K

j=1 wt,j+nt−1
if k is a new cluster

(7.6)

On the other hand, [Ahmed and Xing, 2012] model the dimension by parametrizing the base
distribution G0. It introduces the temporal Dirichlet process Mixture model (TDPM) as a
framework in which it explicitly moels the parametrization of each component over time in a
markovian fashion. With other words, the random measure G is time-varying and modelled as:

Gt|Gt−1, G0, α ∼ DP
(

α + ∑
k

mk,t, ∑
k

mk,t

∑t ml,t + α
Gt−1 +

α

∑t ml,t + α
G0

)
(7.7)

Where mk,t is defined as:

mk,t =
∆

∑
δ=1

exp
(−δ

λ

)
nk,t−δ (7.8)

With nk,t denoting the number of observatons in cluster k at time t, ∆ denoting the range of
relevant historic distributions and λ the decay factor.

7.1.3 Hidden Markov State Transitions

Finally, instead of modelling the clusters on static time-windows and incorporating past infor-
mation in the estimation procedure, we can avoid a bit of the complexity and model the change
between time-windows. As such one has to define states and transition matrices to connect
them. Consider for example the infinite hierarchical hidden markov state model (iH2MS) as
defined in [Xu et al., 2008b], which establishes a hierarchical transition matrix using again a
Dirichlet process. Evidently, non-hierarchical models exist as well.

7.1.4 Model Selection

First of all, although the methods that minimize certain clever loss functions might be effective
and an important part of the machine learning field, they generally do not address uncertainty
nor integrated biases. Furthermore, it is not a priori true that the feasible set of the objective
function is convex. If it ends up being non-convex, there is also no certainty of the procedure
arriving at the optimal. It is not impossible to overcome these problems, they do not take into
account statistical validity and particularly questionable with regard to overcoming the issue
raised by [Keogh and Lin, 2005]. They do not seem very appropriate to model processes of such
stochastic nature. As such, they are not line with the Bayesian nature of this thesis and notably
the clustering model of Chapter 5.

Both an extension of the Dirichlet process within the model as introduced in Chapter 5 into the
time-domain by augmenting the stick-breaking process or implementing a hidden Markov might
pose drawbacks with regard to building and estimating that certain model in an appropriate
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fashion. Although the models might have excellent performance for certain datasets1, the
clustering models as introduced in the Chapter 5 and 6 shows that that might not be the
case for financial datasets at hand. The questionable robustness (Chapter 6), the fact that the
implementation of the clustering algorithm does not allow to be scaled into these models
efficiently and the issue surrounding clustering of subsequences of time series (section 7.1.1),
cause me to shy away from implementation. Furthermore, the power of the Dirichlet process, as
introduced in Chapter 3, seems to lie in its ability to attach a degree of similarity to seemingly
distinct observations. In light of that, it does not seems to make sense to parametrize the
Dirichlet process as invasive as TDPM (section 7.1.2). The clustering model as proposed in
chapter 5 already is quite flexible and modifying the base distribution to accomodate for time
dynamics might weaken the structure of colluding dynamics I intend to impose. The same
is true for the hidden state markov transition models (section 7.1.3), as they require quite
an extensive restructuring as well. On the contrary, simplifying the time dynamics using
exponential smoothers seems to restrictive. As such, the evolutionary clustering methodologies
do not provide a middle ground. That is; A methodology perfectly suited for the problem at
hand that does allow for modelling the time dimension appropriately as well as leaving the
Dirichlet process fairly intact. Keeping the Dirichlet process intact would allow for a fairly direct
implementation of the previously defined clustering model, and thus for a further exploration
of the usability of the Dirichlet process and the proposed estimation methodology in particular.
Therefore it seems logical to turn to the modelling the dynamics in terms of variance covariance
matrices rather than clustering dynamics directly, and hence stick closer to econometrics than
machine learning.

7.2 Indirect Evolutionary Clustering: Correlation and
Variance-Covariance Matrices

Consider the hierarchy of the model as given in section 5.3.2:

yt|φt ∼ f (φt)

φ ∼NIG(zt)

z ∼categorical(pt)

pt ∼DP

(7.9)

Although most attention, up until now, has been given to the realization of the clusters in
terms of its stochastic locations and probabilistic occupants, it actually appears that the most
important part of this model actually is at the bottom. Namely the distribution of the mixture-
proportions, the underlying probability that assigs observations to clusters and hitherto sets
the parameters of the normal-inverse-gamma distribution. However, if we turn our attention
to the modelling of the probabilities of belonging to a certain cluster in order to describe their
dynamics as reasonably similar, then clustering those probabilities and use those clusters to
condition, actually is a weak metric for the correlation matrix. Leading to the question whether it
is actually more beneficent to model the correlation matrix directly, but with applying a sparsity

1Most notably NLP
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prior such that the clusters arise more naturally. As such, the focus of the remainder of the thesis
is shifted slightly of clustering directly, but focuses on modelling correlation using existing
Bayesian methods. As such, the remainder of this chapter focuses on the state of the art literature
with regard to Bayesian semi- and nonparametric variance-covariance matrix modelling. As
such, the rest of this chapter recaps the literature on the field of variance-covariance modelling,
which appears to be the wild-west of econometric modelling. Many different models have been
proposed and therefore this chapter does not claim to survey them all equally in depth. The next
chapter develops an applicable model that employs the variance-covariance matrix in order to
obtain a more appealing methodology of clustering.

7.2.1 Schools of Thought on Multivariate Volatility Models

It has been known for quite some time that variances and covariances change over time
([Andersen et al., 2007]). Furthermore, recently with both increased computational power and
the availability of high-frequency stock trading data the interest for modelling the variance and
covariances of these stocks has taken a spike. The idea is quite interesting, but it inevitably
involves the inobservability constraint. We simply can only observe realizations of the data
generating process and not underlying dynamics that are at play. It is therefore naturally yet
stringent to impose structure in order to derive the dynamcis that are at play. The literature of
multivariate volatility models can be broadly divided into 3 sections. Namely the multivariate
GARCH models, stochastic volatility models and predetermined variance models.

7.2.1.1 Multivariate GARCH

Let yt be a vector of dimension N × 1, than define the general model:

yt = µt + εt

εt = H1/2
t zt

(7.10)

Whereas:
zt ∼ N(0, In) (7.11)

The further specification of Ht tells us which GARCH model we are exactly making use of. A
side-condition is that Ht is positive definite, as it represents the variance-covariance matrix.

A general formulation, called the VEC(p,q)-model, as proposed by [Bollerslev et al., 1994], mod-
els elementwise the Ht matrix as a ARMA(p,q) model. The VEC(1,1) is represented by:

ht = c + Aηt−1 + Ght−1 (7.12)

Whereas ht = ech(Ht) and ηt = vech(εtε
′
t). The vech operator stacks the lower triangular portion

of the N × N matrix as a N(N + 1)/2× 1-vector. A and G are square parameter matrices of
order (N + 1)N/2 and c is a parameter vector with dimension N(N + 1)/2× 1. The number of
required parameter parameters that need to be specified is equal to N(N + 1)(N(N + 1) + 1)/2.
and practically overwhelming. In order to circumvent the problem, [Bollerslev et al., 1994] sug-
gested the diagonal VEC (DVEC) in which A and G are restricted to be diagonal matrices. There
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are various other parametrisations available from the literature as well including exponential
GARCH (EGARCH), quadratic GARCH (QGARCH) and integrated GARCH (IGARCH). See for
example [Palm, 1996].

An interesting model with close ties to the GARCH modelling paradigm is the Adaptive forget-
ting factor for evolutionary clustering, hereinafter AFFECT. It was introduced by [Xu et al., 2014]
and involves shrinkage estimation. The idea treats evolutionary clustering as a problem of
tracking followed by static clustering. It involves modelling the observed matrix of proximities
between objects at each time step as a linear combintaion of a true proximity matrix and a
zero-mean noise matrix. Note the similarity of the procedure with the shrinkage estimation of
covariance matrices as in [Ledoit and Wolf, 2003]. Whereas the true proximities can be viewed
can be viewed as unobserved states of a dynamic system:

Wt = Ψt + Nt (7.13)

Where Ψt is an unknown deterministic matrix of unobserved states, the true proximity matrix.
Nt is the mean-zero error matrix. Although a common approach would be to use the Kalman
filter, as the size of the matrices (n) grow large, taking the inversion of an O(n2)×O(n2) covariance
matrix, might become infeasible. However, we can take a different approach:

Ψ̂t = αtΨ̂t−1 + (1− αt)Wt (7.14)

As such it obtains a smoothed proximity matrix. Where α is the forgetting factor. Indeed, the
model 7.14 can be seen as a matrix variant of IGARCH. The integrated GARCH model, where
parameters are restricted to sum to one.

7.2.1.2 Predetermined Variance Models

Although important to note that these type of models exist and provide easily applicable ways
for preliminary research with respect to variances and covariances, these models are generally
not met with the underlying statistical frameworks. Models in this category include for example
the exponentially weighted moving average model:

σ2
EWMA,t = (1− λ)ε2

t−1 + λσ2
EWMA,t−1 (7.15)

7.2.1.3 Multivariate Stochastic Volatility Modelling

Alternatively, it is possible to set up a model containing an unobserved variance component, the
logarithm of which directly modelled as a linear stochastic process. These models are known as
the multivariate stochastic volatility models (MSV). These discrete time models can be thought
of as Euler approximations of underlying continuous diffusion models. Although they are often
difficult to estimate, they generalize the multivariate series in a more natural way and offer
more flexibility with regard to the data at hand. The first MSV model proposed in the literature
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is due to [Harvey et al., 1994] as:

yt = H1/2
t εt

H1/2
t = diag

(
exp(h1t/2, ..., exp(hnt/2)

)
ht = µ + φ ◦ ht + ηt(

εt

ηt

)
∼ N

([
0
0

]
,

[
Pε 0
0 Σn

]) (7.16)

Whereas ◦ denotes the hadamard operator, which multiplies matrices elementwise. Although
the GARCH literature is reasonably mature, the field of MSV is nowadays more dynamic. As
late as 2006, [Asai et al., 2006] noted posed that "the MSV literature is still in its infancy".

7.2.2 Recent Developments

Although the existing literature on GARCH models is abundant, it has not been successfull in
eliminating drawbacks. Particularly symmetry and positivity constraints require compliciated
restrictions on parameters that are difficult to interpret already. Furthermore, generally the
GARCH models are not invariant to a change in portfolio allocation. Although the MSV models
offer more flexibility, it requires sophisticated simulation methods. Especially when the model
was specified using latent variables.

Recent advancements of the scientific field, and simultaneously the direction this thesis is
heading, consists for several cases of making use of a dynamic extension of the Wishart distribu-
tion. These were developed around the same time and form attempts to improve upon earlier
stochastic covariance models such as [Bollerslev, 1990]. This section presents several interesting
directions that exist in the literature.

7.2.2.1 HEAVY Models

High-frEquency-bAsed VolatilitY (HEAVY) models was introduced by sssssssssssssssssssss
[Shephard and Sheppard, 2010] and further developed by [Noureldin et al., 2012]. Its univariate
specification slightly differs from the GARCH model and depends, as the name gives away, on
realized volatility. The usage of realized volatility revolves on what frequency the data should be
observed, which is a not the main concern of this thesis. It is nonetheless an ongoing discussion
as it is unclear where the balance between more data and better data can be find. That is, as the
frequency increases, micro-structures effects become more outspoken and tend to dominate the
models. It remains questionable if and in what degree this helps modelling variance-covariance
matrices. Anyhow, the HEAVY model can be seen as a natural extension of the GARCH model
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to a 2-equation system:

GARCH:

E[r2
t |FLF

t−1] := h∗t = cg + bgh∗t−1 + agr2
t−1

HEAVY:

E[r2
t |FHF

t−1] := ht = ch + bhht−1 + ahεt−1

E[vt|FHF
t−1] := mt = cm + bmmt−1 + amvt−1

(7.17)

Whereas ch, cm, cg, bh, bm, bg, ah, am, ag denote constants that have to be estimated, vt the realized
measure at time t and ht the conditional variance of return. FLF

t−1 denotes the filtration up to time
t− 1 where observations are made with a low frequency. (HF analogously is an abbreviation
of high frequency). The distinction is the conditioning information set used in modelling the
conditional variance of daily returns. Whereas HEAVY uses the lagged realized measure vt−1

to drive dynamics of ht, GARCH uses the squared return. [Noureldin et al., 2012] develop a
multivariate version by defining Rj,t as a vector of returns at day t minute j and consequently
the realized covariance matrix at dat t as:

RCt =
m

∑
j=1

Rj,tR′j,t (7.18)

And the HEAVY 2-equation model as:

E[Pt|FHF
t−1] = E[RtR′t|FHF

t−1] := Ht

E[Vt|FHF
t−1] := Mt

(7.19)

Or equivalently:

Pt = H1/2
t εtH1/2

t Vt = M1/2
t ηt M1/2

t (7.20)

Subsequently, many VARIMA parametrizations have been developed and estimated using
quasi-maximum likelihood estimation methodologies with εt following a Wishart distribution.

7.2.2.2 Dynamic Correlation Multivariate Stocastic Volatility Models (DC MSV)

Previously the constant correlation multivariate stochastic volatility model (CC MSV), in order to
adapt ARCH-based approaches to a multivariate setting, were introduced by [Harvey et al., 1994]
(7.16). [Asai and McAleer, 2009] proposes an extension by directly modelling εt as a multivariate
normal distribution εt ∼ N(0, Γt):

Γt = Q̃−1
t QtQ̃−1

t
′

Qt+1 = Ω + ψQt + Ξt

Ξt ∼Wishartk(v, Λ)

Q̃t = diagonal(Qt))

(7.21)

Where the function "diagonal()" creates a diagonal matrix by setting the off-diagonal elements
to be zero. The model is estimated by employing a Gibbs sampling scheme.
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7.2.2.3 Multivariate Stochastic Volatility (MSVOL) models

[Philipov and Glickman, 2006] propose to use a Gibbs sampler to estimate a MSVOL model
that is more flexible than previous multivariate SVOL models such as [Jacquier et al., 1994],
[Harvey et al., 1994] and [Mahieu and Schotman, 1994]. Note that although [Harvey et al., 1994]
was mentioned in the previous section as well, the emphasis here lies differently. The authors
formulated it as:

yt|Σt ∼ N(0, Σt)

Σ−1
t |v, St−1 ∼Wishartk(v, St−1)

St =
1
v
(

A1/2)(Σ−1
t
)d(A1/2)′ (7.22)

Whereas the matrix A defines the information about the intertemporal covariance relationships,
d the overall strength of these relationships, k the size of the vectors and matrices and v the
degrees of freedom for the Wishart distribution. As the Gibbs sampler was employed, priors for
the hyperparemeters are necessary to be specified too.

7.2.2.4 Time Varying Realized Variance-Covariance matrices (RCOV)

[Jin and Maheu, 2009] propose a slightly modification of the two previous models and govern
directly Σt rather than the precision, Σ−1

t .

yt|Σt ∼ N(0, Σt)

Σt|v, St−1 ∼Wishartk(v, St−1)

St =
1
v
(
Σd/2

t
)

A
(
Σd/2

t
)′ (7.23)

The authors note however that the basic Wishart RCOV model as displayed has difficulty
capturing persistency properties of speficially financial data. Inspired by the usage of the
Heterogeneous AutoRegressive model (HAR) by [Corsi, 2009], amongst others, it develops the
Wishart RCOV model with K ≥ 1 components as:

Σt|v, St−1 ∼Wishartk(v, St−1)

St =
1
v

[ 1

∏
j=K

Γ
dj
2

t,lj

]
A
[ 1

∏
j=K

Γ
dj
2

t,lj

]
Γt,l =

1
l

l−1

∑
i=0

Σt−i

1 = l1 < ... < lk

(7.24)

The components are as such a sample average of past Σt raised to a different matrix power dj.
The component terms, Γt,l allow for more persistence in the location of Σt while the dj allow the
effect thus to be amplified or dampenend.

7.2.2.5 The Wishart Autoregressive Process of Multivariate Stochastic Volatility

The Wishart Autoregressive (WAR) process is yet another methodology and framework that
relies on more standard methods such as the method of moments and maximum likelihood.
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The distribution of the process is defined by a markov process using the conditional Laplace
transform that provides the conditional expectation of exponential affine transforms of elements
of matrix Yt+1, Ψt As such, the WAR(1)-process is given by

Ψt = E[expTr(ΓYt+1] =
expTr[M′Γ(id− 2ΣΓ]−1MYt]

[det(Id− 2ΣΓ]k/2
(7.25)

Where K denotes the degrees of freedom. It is right that the process can be extended to incorpo-
rate more lags of Yt to a WAR(q) process. The paradigm differs of the others and is more closely
related to continuous time implementations and stochastic calculus. It requires a large shift of
paradigm with regard to the developed framework so far.

7.2.2.6 The Conditional Autoregressive Wishart model (CAW)

The conditional autoregressive Wishart model involves a central Wishart transition distribution
with time-varying scale matrix that has a GARCH specification. It was first proposed by
[Golosnoy et al., 2012] and recently generalized by [Yu et al., 2017]. The CAW(p,q)-model is
described by:

Rt|Ft−1 ∼Wishartk(v, St/v)

St = CC′ +
p

∑
i=1

BiSt−1B′i +
q

∑
j=1

AjRt−j A′j
(7.26)

Note that the model thus can be seen as a state space model. Furthermore, the model as specified
is unidentified and additional restrictions, similar to GARCH models as in [Bollerslev, 1986]
require additional restrictions to allow the possibility of estimating the model. The general
basic representation of the model allows for a multitude of extensions in the direction of
GARCH-MIDAS (CAW-MIDAS), see [Engle et al., 2008], or HAR (CAW-HAR), see for example
[Corsi, 2009]. These extensions are extensively discussed by [Golosnoy et al., 2012] as well. It
estimates these models by employing a quasi-maximum likelihood methodology.

7.2.3 Decompositions

[Chiriac and Voev, 2011] decompose a series of covariance matrices into Cholesky factors before
forecasting those Cholesky series using a suitable time-series model. From these models, the
original covariance matrix can then be reconstructed. The cholesky decomposition of matrix A
is given by:

A = LDL′ (7.27)

Where D is a diagonal matrix and L a lower triangular matrix. The reason why they do so
is because it does not require imposing parameter restrictions on the model. Mos notably, it
guarantees positive definiteness. But a nice implication is that covariance and correlation could
be modelled independently in a sense.
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The Cholesky decomposition is not the only used transformation of the covariance matrix
in the literature. [Bauer and Vorkink, 2006] define a matrix-log-transformation and a matrix-
exponential-transformation. They use these operations to be able to model the so-called log
volatilities instead of the original ones.

7.3 How to proceed?

When opting for a certain model, there is thus enough to pick from. There exist extensions of
the Dirichlet process into an additional time dimension, evolutionary clustering algorithms that
minimize certain loss functions as well as econometric contributions in the form of multivariate
stochastic volatility models, GARCH models, Wishart-dependent models and clever decomposi-
tions. This is however not an attempt to give an overview of all the methods that are out there.
It is highly likely that there exists a large number of additional models ranging from submodels
to completely unrelated models that could be used to describe the underlying dynamics at
hand. It merely aims at giving an overview of my considerations that lead to the proposal of a
new model as well as drawing inspiration from. That is, a model that allows fairly flexible for
extending the Dirichlet process into the time dimension, without the necessity to completely
overturn the inner workings of the clustering model as introduced in Chapter 5. A model that
allows to take advantage of the collusive behaviour of underlying market forces by explicitly
making use of the Dirichlet process, while adhering as much as possible to econometric and
statistic theory as well as avoiding the trap of clustering subsequences of time series as described
by [Keogh and Lin, 2005]. The next chapter develops an algorithm that attempts to do all of that.
It is based on the framework introduced by [Windle et al., 2014], whereas the Dirichlet process
is placed to fullfil the inner workings and implicitly apply a form of shrinking by clustering
abstract dynamics.
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Developing the Clustered Correlations Model

This chapter introduces the Clustered Correlations model. Whereas this thesis started out by
exploring the possibilities of the Dirichlet process (Chapter 3) to model time dynamics in the
form of the clustering model of Chapter 5, it appears that the results, as displayed in Chapter
6, are not promising. As such, Chapter 7 forms an exploration of the different directions that
are out there that might reinvigorate the possibilities of the Dirichlet process as introduced in
Chapter 3. Chapter 7 discusses several machine learning models that approach evolutionary
clustering from a optimization perspective (7.1.2), as well as models that propose to augment
the Dirichlet process of chapter 3 directly (7.1.3, 7.1.4). Finally, section 7.2 explains the reason for
the variance-covariance approach and forms an overview of the models and developments of
that field. These models are important to display what is out there, and where to build upon and
implicitly set up criteria. As often stated, we are but dwarfs standing on the shoulders of giants.

8.1 The Variance Discounting Framework

One of the convenient things about the GARCH literature is that there is some sort of basic
model representation that is used to derive further developments from. It is true that GARCH
is well established and the literature surrounding this theme is vast as well. This common
representation makes it easier to keep oversight of what is out there and to build upon that.
Therefore it is important to first lay the foundations before building the model itself. This can be
said as well for the structure of this chapter.

[Quintana and West, 1987] first introduced multivariate dynamic linear models that employed
some form of variance discounting, but a rigorous justification in the form of Bayesian filtering
for covariance matrices was given by the sister papers [Uhlig, 1994] and [Uhlig, 1997]. These
models, and their relation to several models that were introduced in the previous section, are
nicely generalized in [Windle et al., 2014]. Which I build upon to formalize a general framework.
Denoting rt as the vector of observations, I stick to the formulation of the state-space model in
appendix A.1, but generalize these to the multivariate setting as in chapter 4 of [West, 1996],

57
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among others:

rt = Ztαt + εt with εt ∼ g(H t)

αt+1 = T tαt + Rtηt with ηt ∼ N(O, Q)

H t = StΨtS′t where StS′t ∼ f (H t−1)

(8.1)

Assuming E[rt] = 0 ∀t. To obtain the model of [Uhlig, 1997], let g be a multivariate normal with
covariance matrix H−1

t , f a deterministic function that assigns the upper cholesky factor of the
matrix H t−1 to St (and the lower cholesky factor to S′t) and Ψt ∼ βm(n/2, 1/2) (where n is some
integer which is at least equally large as the dimension of rt, m). The reason of the use of the
multivariate beta-distribution lies in its well established conjugacy with the Wishart distribution.
If we in turn start focusing on the squared observations instead, as well as leaving out the state
space representation: Y t = rtr′t, the model becomes:

Y t = εtε
′
t with εt ∼ g(H t)

H t = StΨtS′t where StS′t ∼ f (H t−1)
(8.2)

With g and f denoting some probability distribution. Assuming normality on εt this could be ex-
tended to the model of [Harvey et al., 1994] and further to the model of [Asai and McAleer, 2009],
as in the previous chapter.

Traditionally one would assume a normal-inverse-gamma distribution for rt. If I do the same
here, the assumption would generalize the (inverse) gamma distribution for ε to a (inverse)
Wishart distribution:

Y t ∼Wishartm(k, (kH t)
−1)

H t = StΨS′t with StS−1
t ∼ f (H t−1)

(8.3)

With m denoting the dimensionality of Y t and k the degrees of freedom of the Wishart dis-
tribution. If we would let g be a multivariate normal with variance-covariance matrix H t,
f (H t−1) = A1/2Hd

t−1A1/2 and a Wishart distribution with a diagonal scale matrix for Ψt we
obtain the model of [Philipov and Glickman, 2006]. Evidently, parametrization of the model
above also allow us to obtain the other models that were introduced in the previous chapter.
[Windle et al., 2014] derive the a convenient result that the model of [Uhlig, 1997] can be can
be extended and derive closed form formulas for forward filtering, backward filtering and
predicting one step in the future. They estimate the state space model:

Y t ∼Wishartm(k, (kH t)
−1)

H t = StΨS′t
St−1 = upper cholesky factor H t−1

Ψt ∼ βm(n/2, k/2)

(8.4)

With n being a positive that is again at least as large as the dimensionality of rt.
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8.2 The Clustered Correlations Model and its Estimation

8.2.1 Estimating the Correlation Matrices

Although the models are intrinsically intuitive and well defined on paper, most still struggle
with scalability. Once it is required to model more than a handful of series using these models,
they tend to break due to the vast amount of parameters associated with it. For example, as Y t

is a matrix of m by m variables, the total number of parameters associated with the covariance
matrices H t is m×m× T, with T denoting the number observations. In order to obtain a model
with a significant smaller number of parameters, I propose to make use of a smart restriction
mechanism, conform the previous chapters of this thesis. Instead of covariances directly, we can
decompose the variance-covariance matrix into correlations and variances (somewhat similar to
[Chiriac and Voev, 2011]). That is, into individual magnitudes and a measure of interconnectivity.
As such, it is possible to model them independently. Conform the previous chapters, these
correlations are assumed to be parametrized by a Dirichlet prior. In such a way we can cleverly
shrink various correlations to be equal to each other and thus make sense of the parameter space.
Define the model as:

H t = diag(
√

Ψt)Stdiag(
√

Ψt)

St = DP
(

fα(α), fH(H t−1)
)

Ψt ∼ igamma(n, nσ2)

(8.5)

n denotes the number of observations used to set up one time-window, whereas σ the sample
variance of that set of observation entails. The literature is inconclusive with regard to the
precise definition of those hyperparameters. It appears that they are often simply taken as being
some fixed value and subsequently disregarded. However, I follow a common implementation
that estimates those parameters from the data. These parametrizations require however some
sort of realized variances approach. In practice, this implies that both the observations and
the parameters of the inverse gamma distribution are constructed by using the information
aggregated in one month. All the daily observations in that period of time are used to estimate
the individual σ2 and n is taken as the number of observations.

The Dirichlet Process is used to make simultaneously sense of the time-dimensions as well as
the shrinkage. I further develop St by defining fα and fH, analogously to 5.13, in the following
way:

St = DP(αt, G0)

αt = α̂t + εt

α̂t+1 = α̂t + ηt+1

εt ∼ N(0, Aε)

ηt+1 ∼ N(0, Aη)

(8.6)

As such, I attempt to describe the underlying tendency to cluster as a state space model. It
simultaneously allows to take into account previous information as well as to form a different
prior distribution for each individual time-slot. In theory, this thus seems as an interesting
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candidate to model this complexity. But in practice it appeared to be easier said than done. In
order to estimate this system appropriately, it is necessary to adhere to the derivation of the
Kalman filter as in appendix A.1. The notational difference between the two might be confusing
at first, but, in fact, equations A.7 and A.8 only need to be translated to this model. The update
step, A.8, becomes:

E[α̂t+1|αt] = sTtα̂t + TtPtZ′t(ZtPtZ′t + Aε)
−1(αt − α̂t)

= sα̂t + Pt(Pt + Aε)
−1(αt − α̂t)

(8.7)

As Zt and Tt in equation A.8 is equal to 1 ∀t in 8.6, and Ht in A.8 is replaced by Aε in order to
avoid confusion.

For each start of simulations for a new step in time, it is thus not too complex to fetch the
expected value of the observation and use it to simulate the value of the observation:

αt ∼ N(α̂t, Aε) (8.8)

It is however slightly more complex to perform the updating step, A.7:

E[α̂t|αt] = α̂t + PtZ′t(ZtPtZ′t + Aε)
−1(αt − α̂t)

= α̂t + Pt(Pt + Aε)
−1(αt − α̂t)

(8.9)

The problem lies in the determination of the value of the observation αt. Precisely because the
value is not exactly observed but has actually to be determined from the Gibbs sampler. In order
to partially circumvent this problem, I propose to weight the simulated αt’s by the stability of the
simulation of the Gibbs Sampler that resulted due to that specific αt. As such, the weight of that
αt becomes the inverse of the sum of standard deviations of the simulated µ.,t, irrespective of the
cluster yi,t was allocated to during the sampling procedure. As such, it weights predictability of
the cluster-formation process, according to the distribution of µi,t. If the distribution of µi,t is
not too informative with regard to yi,t, its standard deviation will be larger and thus will have a
lower weight. In that case, it is probable that the label of the cluster, and hence the location of
the cluster yi,t might differ quite a lot between individual sampling rounds. Vica versa, if the
distribution of µi,t is condensed around a certain point, we obtain more certainty with regard
to the location of yi and consequently want to attach a higher weight to this. The algorithm is
summarized in algorithm 7, where ω denotes the vector of weights and α̂t is updated by:

α̂t = ωT
t αt (8.10)
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Algorithm 7 Gibbs Sampling Estimation with α state space Implementation, only Correlation-
matrices

1: Let T denote the total number of time observations
2: Let ITERα denote the number of simulations for each αt
3: Let ITERDP the number of simulations for each clustering given α
4: State space representation:

αt = α̂t + εt

α̂t+ = α̂t + ηt+1

εt ∼ N(0, Aε)

ηt+1 ∼ N(0, Aη)

(8.11)

5: α̂0 = ᾱ
6: for ∀t ≤ T do
7: for ∀j ≤ ITERα do
8: Generate: αt,j ∼ N(α̂t−1, Aε)
9: Let zt,j,0,. denote an initial partition of observations into clusters

10: Let µt,j,0,. denote a vector of initial cluster means for each observation
11: Let V t,j,0,. be a matrix of initial cluster variances and covariances for each observation
12: for ∀i ≤ ITERDP do
13: µt,j,i,. = µt,j,i−1,.; V t,j,i,. = V t,j,i−1,.; zt,j,i,. = zt,j,i−1,.

14: for ∀i′ ≤ NCorrelations do
15: Set Up Probabilities
16: pk = ∑j′ :zt,j,i,j′=k qj′(yt,i′ ; µt,j,i,j′ ; V t,j,i,j′)

17: p0 = αt,jq0(s; S; yt,i′ ; µt,j,i−1,i′ ; τ)

18: [p0; p1; ...; pK] =
1

∑k pk+p0
[p0; p1; ...; pK]

19: Determine Transition
20: zt,j,i,i′ ∼ Categorical(p = [p0; p1; ...; pK])
21: Update parameters µt,j,i,i′ , Vt,j,i,i′

22: if zt,j,i,i′ == 1 then (Assign it to a new cluster)
23: Vt,j,i,i′ = V
24: µt,j,i,i′ |V t,j,i,i′ ∼ N(yt,i′ ,

τ
1+τ V t,j,i,i′)

25: else (Assign it to an existing cluster)
26: mk =

1
nk

∑j′ :zj′=k yj′

27: Vt,j,i,i′ = V
28: µt,j,i,i′ |V t,j,i,i′ ∼ N(mk, 1

1+τ V t,j,i,i′)

29: ωt,j =
1

∑∀i′
√

VAR(µt,j,.,i′ )
Storing and calculating results

30: St,j,i = matrix(µt,j,i,.) 1

31: α̂t = ωT
t,.αt,.

32:

Output: S

s

1Where matrix reshapes the vector µt,j,i,. back into a upper triagonal matrix. S collects all those matrices, either in
the form of a list or an array. This holds for algorithm 8 as well.
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8.2.2 Complete Estimation Algorithm

Using a inverse gamma prior for ψ to model the magnitude that corresponds to the correlation
matrix, e.g. the variances themselves, it is possible to now complete the model and obtain distri-
butions for the individual elements of the variance covariance matrix. For each Gibbs sampling
round, the results are then multiplied by the variances to form a distribution. It is necessary
to repeat this process for each simulation of the variance. This might massively increase the
required space for the algorithm to operate. Nevertheless, if enough space is available, the
results consist of distributions that are able to capture the dynamics in a Bayesian fashion. An
overview of the complete algorithm is depicted in algorithm 8.

Here St, j, i denotes the matrix with individual elements µt,j,i,i′ arranged such that they form
the correlation matrix again. The array H contains the variance-covariance matrices for all
different timewindows and underlying parameter simulations. That is, for all time t (t ≤ T),
for all simulated ψt′ (t′ ≤ ITERψ), for all simulated αt,j (j ≤ ITERα) all Gibbs sampling round
(i ≤ ITERDP) and, last but not least, for all individual correlations (i′ ≤NCorrelations). The size
of H is thus T × ITERψ × ITERα × ITERDP×(nr of variables).

Note that those variables come from the correlation matrix, but are vectorized in order to speed
up the performance of the algorithm as well as preserve simplicity within the code. After every
round of sampling where each variable is sampled exactly once, the results are reformulated
back into a matrix again in order to perform the matrix operations that yield an estimate of the
variance-covariance matrix (H).

Algorithm 8 can be described compactly by: "sampling the individual variances for all time
windows, sampling the correlations for all time windows and α’s, and obtaining the covariance
matrix by applying a reverse of the variance-correlation decomposition on all obtained simula-
tions of those two elements".

A discussion of the results can be found in the next chapter, whereas the results themselves are
attached as appendix D.
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Algorithm 8 Complete Estimation Algorithm Description

1: Let T denote the total number of time observations
2: Let ITERα denote the number of simulations for each αt
3: Let ITERDP denote the number of simulations for each clustering given α
4: Let ITERψ denote the number of simulation for each time period for ψ
5: State space representation:

αt = α̂t + εt α̂t+ = α̂t + ηt+1

εt ∼ N(0, Aε) ηt+1 ∼ N(0, Aη)
(8.12)

6: α̂0 = ᾱ
7: for ∀t ≤ T do
8: Estimation of Variances
9: for ∀t′ ≤ ITERψ do

10: Obtain ψt,t′ ∼ igamma(n, nσ2)

11:
12: Estimation of Correlations
13: for ∀j ≤ ITERα do
14: Generate: αt,j ∼ N(α̂t−1, Aε)
15: Let zt,j,0,. denote an initial partition of observations into clusters
16: Let µt,j,0,. denote a vector of initial cluster means for each observation
17: Let V t,j,0,. be a matrix of initial cluster variances and covariances for each observation
18: for ∀i ≤ ITERDP do
19: µt,j,i,. = µt,j,i−1,.; V t,j,i,. = V t,j,i−1,.; zt,j,i,. = zt,j,i−1,.

20: for ∀i′ ≤ NCorrelations do
21: Set Up Probabilities
22: pk = ∑j′ :zt,j,i,j′=k qj′(yt,i′ ; µt,j,i,j′ ; V t,j,i,j′)

23: p0 = αt,jq0(s; S; yt,i′ ; µt,j,i−1,i′ ; τ)

24: [p0; p1; ...; pK] =
1

∑k pk+p0
[p0; p1; ...; pK]

25: Determine Transition
26: zt,j,i,i′ ∼ Categorical(p = [p0; p1; ...; pK])
27: Update parameters µt,j,i,i′ , Vt,j,i,i′

28: if zt,j,i,i′ == 1 then (Assign it to a new cluster)
29: Vt,j,i,i′ = V
30: µt,j,i,i′ |V t,j,i,i′ ∼ N(yt,i′ ,

τ
1+τ V t,j,i,i′)

31: else (Assign it to an existing cluster)
32: mk =

1
nk

∑j′ :zj′=k yj′

33: Vt,j,i,i′ = V
34: µt,j,i,i′ |V t,j,i,i′ ∼ N(mk, 1

1+τ V t,j,i,i′)

35:
36: Storing and calculating results
37: St,j,i = matrix(µt,j,i,. )
38: for ∀t′ ≤ ITERψ do
39: Ht,t′,j,i = diag(ψt,.)St,j,idiag(ψt,.)

40: ωt,j =
1

∑∀i′
√

VAR(µt,j,.,i′ )

41: Update Parameters
42: α̂t = ωT

t,.αt,.

43:

Output: H, S
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Clustered Correlations Model Results

9.1 Data Correlation Clustering Model

In order to preserve non-singularity, which is necessary for the cholesky decomposition, it is
more convenient to aggregate daily data per month and calculate take the input as monthly
variance-covariance matrices. Secondly, because estimation of the model requires heavy sim-
ulation and consequently thus quite a long runtime, it is convenient to test the model on a
lower number of variables. At this stage of the game, I am foremost interest in the performance
of the model. Therefore I make use of the smaller industry dataset of Fama en French. This
one contains only 5 industries, namely Consumer, Manufacturing, Hi-tech, Health and Other.
The data ranges from Juli the 1st, 1926 up to the last trading day of March 2018. Several days
are missing, because generally stock exchanges are not open seven days a week. In order to
restrict the size, I take the segment from January 2005 up until today. These daily observation
are then aggregated into monthly variance-covariance matrix. Implying that we are left with 159
variance-covariance matrices. See figure 9.1. Note how strong the tendency to move together for
these variables can be at times.
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9.2 Runtime of the Algorithm

The algorithm was run with the following settings for the parameters:

• T = 159

• ITERα = 500

• ITERDP = 500

• ITERψ = 500

• 5 Variances

• NCorrelations = 10

• Aε = 100

• Aη = 1

• α0 = 75

On a laptop with a 2.8GHz CPU, 7.89 GB RAM a took the algorithm 5.35 days to run, while
continuously using about 20% of the whole available capacity. Although such a runtime might
be worrying, there is lot of efficiency in terms of the implementation to be gained. Therefore, the
remaining part of section 10.2 discusses several ways to implement further parallelization as
well as several ways to harness a greater amount of computing power.

9.3 Discussion of the Performance and Accuracy and Financial
Interpretation

Appendix D documents both the estimated state space on α, as well as the upper triangular
correlations matrix and the upper triangular covariance matrix. Theses results are the means
of complex underlying distributions as estimated by algorithm 8. That is, the mean belief of
each observation of the location of the cluster it is assigned to, aggregated over simulations of
α and Gibbs Sampling rounds. When comparing the variance-covariance matrix results to the
observations (the sample variance-covariance matrices), we see that the model overall tends to
be a bit more modest (figure D3). The expectations tend to underestimate. Therefore, the prior
distribution to estimate the individual variances might be a bit modest and probably performs
better with appropriate retuning. However, due to the fact that magnitudes were seperated
from interdynamics in this model, this should not have a profound effect on the estimated
distributions dictating those correlations.

The correlations matrices over time are quite volatile, but tend to flock together nevertheless,
implying that the Dirichlet process has had effect (figure D2). It is interesting to note that the
results show that the consumer portfolio tends to show quite a high correlation with the other
4 portfolios, whereas the the rest of the correlations tend to be more modest. Floating around
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zero and rarely showing a great tendency to correlate. The results do show however that the
correlations between the portfolios went up in 2008, but in a explosive fashion. As such this
does not support the hypothesis that correlations build up slowly over time. They respond
quickly to perhaps unanticipated events that require traders and investor to rethink their own
portfolios and strategies. The results do thus show that in 2008 correlations all went up, except
the correlations between High-tech and Health, which is interesing. It is likely that Health
portfolios were suddenly deemed to be more save than risky High-Tech portfolios. For the other
correlations with health we see less of a pronounced effect of the crisis of 2008 as well. In terms
of persistence of high correlations periods, it appears from the results that high volatilty, as well
as high correlation tend to come in periods. Periods of strong volatility alternate with more
calmer eras. A full inspection of the persistence of these series involves setting up a statistical
test, nonetheless. See [Andersen and Bollerslev, 1997] for a detailed description of persistence.
All in all, these results show that correlations theoretically could explain much more of the
underlying dynamcis than covariance matrices alone. If there is one rule of thumb that can be
derived from the results, would that be the observation that high correlations between portfolios
go together with financial instability and could hence potentially be a strong indicator of bad
weather ahead.

Finally, although Aε is quite a lot larger than Aη , implying that the observation is far less stable
than the actual observation, there does not seem to be an appropriate response to critical event in
the state space model (figure D1). One would expect α and α̂ to decrease sufficiently to account
for economies in recession in and after 2008. The common believe is that correlations tend
towards 1 in times of crises, and this believe would imply thus that the tendency of clustering
into few clusters large clusters would increase. Hence, one would expect the state space param-
eters to drop, as α dictates the likeliness that observations form their own cluster within the
Gibbs sampling procedure. Note however that α does tend to increase significantly after 2010,
indicating that the economy entered a more stable time where investors have more possibilities
to diversify their portfolios. However, one would expect to see more ’action’ in the graph around
2008. The magnitude of the effect is small nonetheless. This does not mean that the underlying
distribution is completely off, but it does imply that the model could benefit from tuning of the
underlying parameters. I expect that allowing more flexibility in higher layers, like the state
space layer, while restricting the distributions of deeper layers could improve the effects. The
choice to use a state space changes in α over time as well as to connect dynamics over time
appeared to be not very satisfying.

It is very unfortunate that the runtime of the algorithm is compromised by the complexity of
the model. In essence, one would want to run this model for several different parametrizations,
as was done for the clustering algorithm before. The model contains various hyperparameters
that ideally should be tested for other values as well. Next to that, it is not ideal in a Bayesian
setting to be required to neglect large parts of the underlying distributions in order to visualize
what is going on. The strongest part of this model might as well be those distributions, but that
potential remains unharnessed.
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Conclusion, Further Research and Further
Development

10.1 Modelling and Quantification of the posterior

Although the Dirichlet process is promising for the development of Bayesian estimation of
variance-covariance matrices, the results indicate that these models might be lacking in various
aspects, including runtime, robustness and ease of visualisation. This is true for this model at
least. The clustering part of the 2-step procedure (Chapter 5) shows that the Dirichlet might effec-
tively assign observations to an unknown number of clusters, but its performance nevertheless
strongly hinges upon perfectly-tuned parameters and hyperparameters. These problems trans-
late directly to the Clustered Correlations model (Chapter 8). From the underlying distributions,
one could in theory obtain all the information about the underlying complexity, but it is not
straightforward to translate these complex distributions into useful insight. This is not necessary
due to the model specification, but merely inherent in distributions over distributions. The
information from the initial distributions is extremely large, but in order to gain an insight into
the clustering labels that were applied during a full Gibbs sampling iteration, it was necessary
to translate those simulated allocations into distributions of probabilities. Practitioners tend
to use the last partition visited, but that neglects the whole simulation process. I use a Greedy
MAP (section 5.3.3) translation mechanism, but that privileges the most likely allocations and
hence disturbs the distribution as well. The difficulty to obtain clear characterizations of the re-
sulting distributions make analyzing the performance, usefullness and robustness of both these
two algorithms difficult as well. Interesting solutions for the formulation of MAPs from these
posterior distribution lie in recent research like [Raykov et al., 2014] and [Broderick et al., 2013].
For the Clustered Correlations model, I therefore focus on the means of the cluster rather than
the cluster label themselves. This already alleviates the problem, but does not necessarily make
the distribution easier to visualize. In fact, in order to obtain a complete idea of the underlying
distribution, it is necessary to inspect more profoundly the individual distributions for all in all
timeslots, as well as their individual Gibbs sampling results. I have stored these in considerable
pdfs entailing thousands of pages. They show that the simulations tend to be quite robust when
times are stable, but become unpredictable once stock markets become more volatile. Naturally,
these pdfs are available for further research and to practitioners interested in the inner workings
of the model.
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In general, the methodology as described in this thesis could benefit immensely from more
efficient code and more computational power. In such settings, it becomes less time consuming
to set the parameters by ratio or even trial and error. As such, although computational power
has come a long way, there are still gains to be made. For the model to be practically relevant, it
is even absolutely necessary that the runtime is decreased to a reasonable time.

Another promising direction for further research would be a better way to engineer the time-
dimension. The Clustered Correlations Model (Chapter 8) implements α as a state space, but
does use a shortcut to obtain updates of the observation. That is, a smart weighting of simulated
αs according to the performance of the resulting simulation. It seems like a logical solution, but
it is nevertheless not formulated or based on Bayesian statistics. An optimal solution should
at least have (Bayesian) statistical validity. All in all, I hope that this thesis opens up new
interesting research directions.

10.2 Estimation: Runtime Improvements

Because of the lack of robustness of the clustering algorithm introduced in chapter 5, it is likely
that this true for Clustered Correlations model as well. As the (hyper)-parameterspace could
be quite extensive, combined with the displayed subtlety required to setting hyperparameters
for such models, for this model to be efficiency further investigated it is necessary to improve
the runtime. I ran the algorithm thus basically under the standard R settings. At this stage of
development of the algorithm, these statistical techniques and inspecting their usability, the
algorithm was implemented with accuracy in mind rather than speed. As such, it is without
question that the runtime could be improved in the future. First of all, the loop that employs
the Gibbs sampling procedure should be parallelized. That is the loop starting at line 12 in
algorithm 7 and line 18 of algorithm 8. The other parts of the algorithm require being processed
sequentially. Without being able to estimate α̂t we cannot proceed to the next loop where that
parameter is used to sample αt,j. However, given a certain α̂t−1, observations yt,., simulated ψ

and initial values for z, µ and V , the separate Gibbs Sampling procedures do not depend on
each other and could be executed in parallel. Note that the draws of ψ could also be executed in
parallel for the individual elements, as well as αt. Despite the fact that these particular parts
could be performed in parallel, the algorithm requires that they are connected sequentially. An
overview of the resulting pipeline, including the parts with appropriate parallelization, is given
in appendix E.

The ever increasing demand for more computing power, fuelled by novel algorithms and enor-
mous quantities of data, as well as the possibilities offered to consumers on terms of computing
power, have given rise to a plethora of options to do so. Cloud computing services offered by
Amazon (AWS), Microsoft (Azure) and Google (Google Cloud) offer massive parallelization
using a multitude of cores. If saving money is an issue, one could also rely on excellent products
that attempt to make the most out of your laptop. GPU’s can switched on for certain tasks, either
by simply augmenting the code of by clicking, installing and configurating the appropriate
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software. For example, the laptop that I make use comes preinstalled with several utilies of the
new NVIDIA CUDA packages. Next to that, it is known that C++, python and most notably
Spark have much more ease and capabilities in terms of paralllel computating compared to
R. Finally, there is some sort of middle ground where one has the possibility to make use of
multiple cores without actually having to buy computational power from Amazon, Google or
Microsoft. In such cases, it is possible to set up multiple environment where parts of the could
run and an orchestrator that manages the available resources and environments. Nowadays
one is not obliged to make use of virtual machines, but instead one can make use of what are
called dockers to create mildly unstable but temporary virtual environments. Those dockers
can then be created, managed and removed by applications such as Kubernetes, which came
out of google’s BORG project. Fortunately, it has been giving to the public as it is opensourced
nowadays.
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Proofs and Derivations

A.1 Kalman Filter

Lemma A.1.1 Suppose:

E

[
x
y

]
=

[
µx

µy

]

Var

[
x
y

]
=

[
Σx,x Σx,y

Σx,y Σy,y

]

Then:

E[x|y] = µx + Σx,yΣ−1
y,y(y− µy)

Var[x|y] = Σx,x − Σx,yΣ−1
y,yΣx,y

Lemma A.1.2 These results hold whether (x, y) is normally distributed or not. (MVLUE: minimal
variance linear unbiased estimator property)

Lemma A.1.3 The posterior mean and variance matrix follow similarly:

P[x|y] = P(x, y)
P(y)

=
P[y|x]P[x]

P[y]
(A.1)

Lemma A.1.4 The estimate x̂|y is a minimum variance linear posterior mean estimate (MVLPME)

Define the state space model as:

yt = Ztαt + et

at+1 = Ttαt + Rtηt

et ∼ N(0, H)

ηt ∼ N(0, Q)

αt ∼ N(a1, P1)

(A.2)
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With Notation:

at|t = E[αt|yt]

at+1 = E[αt+1|yt]

Pt|t = Var[αt|yt]

Pt+1 = Var[αt+1|yt]

vt = yt − E[Ztαt + εt|yt−1]

(A.3)

Applying Lemma A.1.1, we can derive the update step:

at|t = E[αt|Yt−1] + cov(αt, vt)[var(vt)]
−1vt

Pt|t = var[αt] + cov(αt, vt)
[
var(vt)

]−1cov(αt, vt)
(A.4)

With:

cov(αt, vt) = E[αt(yt − Ztat)
′|yt−1]

= E[αt(Ztαt + εt − Ztat)|yt−1]

= ZtE[α2
t − αtat]Z′t

= PtZ′t

(A.5)

Var[vt] = Var[Ztαt + εt − Ztat] = ZtPtZ′t + Ht = Ft (A.6)

Thus:

at|t = at + PtZ′t(ZtPtZ′t + Ht)
−1vt

Pt|t = Pt − PtZ′t[ZtPtZ′t + Ht]
−1ZtP′t

(A.7)

Then, Lemma A.1.2 states that this is the best estimate of at and Pt given the information available
up to time t. Next, we can use this to derive the forecast step:

E[αt+1|yt] = TtE[αt|yt] + RtE[ηt]

= TtE[αt|yt]

= Ttat + TtPtZ′t[ZtPtZ′t + Ht]
−1vt

= Ttat + Ktvt

(A.8)

Where Kt = TtPtZ′tF
−1
t is the Kalman gain and F−1

t = [ZtPtZ′t + Ht]−1

Pt+1 = Var[Ttαt + Rtηt|yt]

= TtPt|tT
′
t + RtQtR′t

= Tt(Pt − PtZ′tF
−1
t ZtPt)T′t + RtQtR′t

= TtPt(Tt − KtZt)
′ + RtQtRt

(A.9)

From Lemma 3 and 4 we can than deduce that these results hold under non-normality of (αt, vt)

as well.
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A.2 Deriving the Dirichlet Process

Both [Ferguson, 1973] and [Blackwell and MacQueen, 1973] show that the Dirichlet process
arises naturally from a finite mixture model characterized by the Dirichlet distribution. The
Dirichlet distribution with K dimensions is characterized by probability density function:

f (x1, .., xK; α1, ..., αK) =
1

B(α

K

∏
i=1

xαi−1
i (A.10)

With:

B(α) = ∏K
i=1 Γ(αi)

Γ(∑K
i=1 αi)

(A.11)

With αi as the mixing proportions, which are naturally constrained to be positive and sum
to 1. A nice property of the Dirichlet distribution is the fact that it is the conjugate prior of
the categorical distribution and multinomial distribution. Denote N as the total number of
observations and K as the total number of clusters:

P[θ|α] ∼ Dirichlet(α)

P[zi|θ] ∼ multinomial(θ)
(A.12)

Then the joint distribution is:

P[θ, z|α] = P[θ|α]×
n

∏
i=1

P[zi|θ]

=
Γ(∑K

k=1 αk)

∏K
k=1 Γ(αk)

K

∏
k=1

θαk−1
k × N!

∏K
k=1 nk!

K

∏
k=1

θnk
k

(A.13)

Where:

nk =
N

∑
i=1

1(zi = k) (A.14)

Then we may integrate out the mixing proportions and obtain the marginal of z given alpha:

P[z|α] =
∫

p[z|θ]P[θ|α]dθ

=
Γ(∑K

k=1 αk)

∏K
k=1 Γ(αk)

N!

∏K
k=1 nk!

∫ K

∏
k=1

θnk+αk−1
k dθk

=
Γ(∑K

k=1 αk)

∏K
k=1 Γ(αk)

N!

∏K
k=1 nk!

∏K
k=1 Γ(αk + nk)

Γ(∑K
k=1 αk + nk)

(A.15)

To see this, note that we can use the fact that each proper distribution sums to 1 by definition:∫
P[θ|α] = 1∫ Γ(∑K

k=1 αk + nk)

∏K
k=1 Γ(αk)

K

∏
k=1

θαk−1
k dθ = 1

∫ K

∏
k=1

θαk−1
k dθ =

∏K
k=1 Γ(αk)

Γ(∑K
k=1 αk)

(A.16)
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Then simply replace the parameters αk by nk + αk

However, a slightly different view on the same model is derived from the categorical distribution.
The difference is slight, but very outspoken. To derive its properties, slightly rewrite the model
as:

P[θ|α] ∼ Dirichlet(α)

P[zi|θ] ∼ categorical(θ)
(A.17)

Then the joint distribution is:

P[θ, z|α] = P[θ|α]×
n

∏
i=1

P[zi|θ]

=
Γ(∑K

k=1 αk)

∏K
k=1 Γ(αk)

K

∏
k=1

θαk−1
k ×

K

∏
k=1

θnk
k

(A.18)

It follows that the marginal of z given α analogously is:

P[z|α] = Γ(∑K
k=1 αk)

∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk + nk)

Γ(∑K
k=1 αk + nk)

(A.19)

This can be used to derive mathematically the convenience of the Dirichlet process. To demon-
strate the further line of thought, take the probability that zN = 1. E.g. observation N belongs to
cluster k = 1. Condition zN = 1 on the other zi s.t. i < N. We can calculate this by:

P[zN = 1|z1, ..., zN−1, α] =
P[z1, ..., zN = 1|α]
P[z1, ..., zN−1|α]

(A.20)

Then we obtain:

P[zN = 1|z1, ..., zN−1, α] =

Γ(∑K
k=1 αk)

∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk+nk)

Γ(∑K
k=1 αk+nk)

Γ(∑K
k=1 αk)

∏K
k=1 Γ(αk)

(
∏k 6=1 Γ(αk+nk)

)
Γ(α1+n1−1)

Γ
(
(∑k 6=1 αk+nk)+α1+n1−1

)
=

∏K
k=1 Γ(αk + nk)(

∏k 6=1 Γ(αk + nk)
)

Γ(α1 + n1 − 1)

Γ
(
(∑k 6=1 αk + nk) + α1 + n1 − 1

)
Γ(∑K

k=1 αk + nk)

=
Γ(α1 + n1)

Γ(α1 + n1 − 1)
Γ(N + ∑K

k=1 αk − 1)
Γ(N + ∑K

k=1 αk)

=
α1 + n1

N + ∑K
k=1 αk

(A.21)

Taking into account that after fixing zN , it is no longer stochastic variable. This implies that we
should replace N by N − 1 in the equation. From here it should be clear that:

P[zN = k|z1, ..., zN−1, α] =
αj + nk

N + ∑K
k=1 αk − 1

(A.22)
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Now, if we condition this αi = αj =
∑K

k=1 αk
K ∀i, j.Then I obtain:

P[zN = k|z1, ..., zn, α] =
∑K

k=1 αk
K + nk

N + ∑K
k=1 αk − 1

(A.23)

Then, following [Rasmussen, 2000], let K → ∞:

P[zN = k : nK ≥ 1|z1, ..., zn, α] =
nk

N + ∑K
k=1 αk − 1

(A.24)

From the law total probability it has to be that:

P[zn = k : nk = 0|z1, ..., zn, α] =
∑k:nk=0

∑K
k=1 αk

K

N + ∑K
k=1 αk − 1

=
α̃

N + ∑K
k=1 αk − 1

(A.25)

At first, it seems counter-intuitive that one is able to let the fraction ∑K
k=1 αk

K → 0 for any k : nK ≥ 1.
However, if we fix N, it will always be the case that the number of unoccupied clusters will
grow. Even more, the number of occupied clusters is bounded above by N and the ratio of
occupied clusters over unoccupied clusters will tend to zero:

lim
K→∞

N
K
→ 0 (A.26)

The same reasoning also implies that:

limk→∞α̃→
K

∑
k=1

αk (A.27)

As such, to fully derive the Dirichlet process we simply need to complete the derivation above
by a distribution that defines a cluster when it is occupied, G0. Then we obtain:

P[yN |zN ]P[zN |z−N , α] = P[yN |zN = k : nk = 0]P[zN = k : nk = 0|z−N , α]

+ P[yN |zN = k : nK ≥ 1]P[zN = k : nK ≥ 1|z−N , α]

=
α̃

N + ∑K
k=1 αk − 1

G0 +
K

∑
k=1

nk

N + ∑K
k=1 αk − 1

Gk

(A.28)

Which in turns allows for a more dense representation as:

P[yN |zN ]P[zN |z−N , α] ∝ ᾱG0 +
K

∑
k=1

nkGk (A.29)

In order to complement the literature, compare this for example to equation 5) in
[Escobar and West, 1995]:

(Yn+1|π) ∼ αanTs(m, M) + an

k

∑
j=1

njN(µ∗j , V∗j ) (A.30)

Where:

ar =
1

α + r
(A.31)
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A.3 Mixture Proportions Conditionals

Finally, we can make use of the marginal in A.16 to derive the conditional P[θ|z, α], for the
categorical model with Dirichlet prior. Rewrite:

∏k Γ(αk)

Γ(∑k αk)
= P[z|α]∏k Γ(αk + nk)

Γ(∑k αk + nk)
(A.32)

And replace:

P[θ, z|α] = P[z|α]P[θ|z, α]

= P[z|α] Γ(∑k αk + nk)

∏k Γ(αk + nk)

K

∏
k=1

θαk−1
k ×

K

∏
k=1

θnk
k

(A.33)

Rewriting the products then gives the conditional distribution as:

P[θ|z, α] =
Γ(∑k αk + nk)

∏k Γ(αk + nk)

K

∏
k=1

θαk+nk−1
k (A.34)

Which follows a Dirichlet(α1 + n1, ..., αK + nK)-distribution. Now in order to obtain the con-
ditional probability for a single θi, first break it down to a lower-dimensional setting. Take
K = 3:

P[θ1, θ2, θ3|z, α] =
Γ(α1 + α2 + α3 + N)

∏3
k=1 Γ(αk + nk)

(
θα1+n1−1

1 θα2+n2−1
2 θα3+n3−1

3

)
(A.35)

Then in order to obtain the conditional of θ1:

P[θ1|θ2, θ3, α, z] =
∫ 1

0

∫ 1

0
P[θ1, θ2, θ3|α, z]dθ2dθ3

=
∫ 1−θ1

0

Γ(α1 + α2 + α3 + N)

∏3
k=1 Γ(αk + nk)

(
θα1+n1−1

1 θα2+n2−1
2 (1− θ2 − θ2)

α3+n3−1
)

dθ2

=
Γ(α1 + α2 + α3 + N)

∏3
k=1 Γ(αk + nk)

θα1+n1−1
1

∫ 1−θ1

0
θα2+n2−1

2 (1− θ1 − θ2)
α3+n3−1dθ2

( Set: θ2 = (1− θ1)u)

=
Γ(α1 + α2 + α3 + N)

∏3
k=1 Γ(αk + nk)

θα1+n1−1
1

(
1− θα2+α3+n2+n3−1

1

) ∫ 1

0
uα2+n2−1(1− u)α3+n3−1du

=
Γ(α1 + α2 + α3 + n1 + n2 + n3)

Γ(α1 + n1)Γ(α2 + n2)Γ(α3 + n3)

Γ(α2 + n2)Γ(α3 + n3)

Γ(α2 + α3 + n2 + n3)
θα1+n1−1

1 (1− θ1)
α2+α3+n2+n3−1

=
Γ(α1 + α2 + α3 + n1 + n2 + n3)

Γ(α1 + n1)Γ(α2 + α3 + n2 + n3)
θα1+n1−1

1 (1− θ1)
α2+α3+n2+n3−1

(A.36)

Where I used that the beta function can be transformed to an integral over polynomials
([Krantz, 2012]):

B(m, n) =
(m− 1)!(n− 1)!
(m + n− 1)!

=
∫ 1

0
um−1(1− u)n−1du (A.37)

It follows that:

P[θ1|θ2, θ3, α, z] ∼ Beta(α1 + n1, α2 + α3 + n2 + n3) (A.38)
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Furthermore, this result can be extended to higher dimensions such that the conditional becomes:

P[θi|θ−i, α, z] ∼ Beta(α1 + n1, ∑
j 6=i

αj + nj) (A.39)

Using these results for the conditionals, we are then able to implement the Gibbs sampling
methodology.

Note that the results are again easily extendable to the multinomial distribution with a Dirichlet
prior. Then take again:

P[θ|z, α] =
Γ(∑k αk + nk)

∏k Γ(αk + nk)

N!

∏K
k=1 nk!

K

∏
k=1

θαk+nk−1
k (A.40)

Evidently, for K = 3:

P[θ1|θ2, θ3, z, α] =
N!

∏3
k=1 nk!

Γ(α1 + α2 + α3 + n1 + n2 + n3)

Γ(α1 + n1)Γ(α2 + α3 + n2 + n3)
θα1+n1−1

1 (1− θ1)
α2+α3+n2+n3−1

(A.41)
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A.4 Bayesian Estimation of the Kalman Filter

[Geweke and Tanizaki, 2001] proposes a intuitive and concise way to estimate state-space mod-
els following the Bayesian paradigm. In order to describe how to go about this, I use the
notation introduced in section A.1 and follow the steps in [Geweke and Tanizaki, 2001]. First
define At = (α0, ..., αt), let T denote the total number of timesteps. Denote Yt = (y1, ..., yt).
Finally, denote the parameters with a tilde in a similar fasion like Z̃t = (Z1, ..., Zt).The joint
distribution of the measurements and the states are then:

P[AT, YT|Z̃T, T̃T, H̃T, Q̃T, R̃T] = Py[YT|AT, Z̃T, H̃T]Pα[AT|T̃T, R̃T, Q̃T]P[Z̃T, T̃T, H̃T, Q̃T, R̃T]

(A.42)

For simplicity, take the hyperparameters as being fixed for the moment over time and determin-
istic. Because the number of time steps was defined to be T, denote a fixed and deterministic
matrix T̃T as T̄ Then the joint distribution collapses into:

P[AT, YT|Z̄, T̄, H̄, Q̄, R̄] = Py[YT|AT, Z̄, H̄]Pα[AT|T̄, R̄, Q̄] (A.43)

Where the two densities of the right hand are represented by:

Pα[AT|T̄, R̄] =

Pα[α0|T̄, R̄]∏T
t=1 Pα[αt|αt−1, T̄, R̄] if α0 is stochastic

∏T
t=1 Pα[αt|αt−1, T̃T, R̃T] otherwise

Py[YT|AT, Z̄, H̄] =
T

∏
t=1

Py[yt|αt, Z̄, H̄]

(A.44)

For the model as defined in equation A.2 these probabilities are defined as:

Pα[αt|αt−1, T̄, R̄] = (2π)−kα/2|T̄Pt−1T̄′ + R̄Q̄R̄′|−1e
− 1

2

(
αt−T̄αt−1

)′(
(T̄Pt−1T̄′+R̄Q̄R̄′)−1

)(
αt−T̄αt−1

)

Py[yt|αt, Z̄, H̄] = (2π)−ky/2|Z̄Pt−1Z̄′ + H̄|−1e
− 1

2

(
yt−Z̄αt

)′(
(Z̄Pt−1Z̄′+H̄)−1

)(
yt−Z̄αt

)
(A.45)

With kα and ky denoting the dimensionality of α and y, respectively. However, it is known that
in case of fixed and deterministic hyperparameters, Pt quickly converges to a stable fixed value.
Suppose we know that value and set our initial value P0 to it, these equations become more
handlable as:

Pα[αt|αt−1, T̄, R̄] = (2π)−kα/2|T̄P0T̄′ + R̄Q̄R̄′|−1e
− 1

2

(
αt−T̄αt−1

)′(
(T̄P0T̄′+R̄Q̄R̄′)−1

)(
αt−T̄αt−1

)

Py[yt|αt, Z̄, H̄] = (2π)−ky/2|Z̄P0Z̄′ + H̄|−1e
− 1

2

(
yt−Z̄αt

)′(
(Z̄P0Z̄′+H̄)−1

)(
yt−Z̄αt

)
(A.46)
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Then A.43 comes down to:

Py[YT|AT, Z̄, H̄]Pα[AT|T̄, R̄, Q̄] =
T

∏
t=1

[
(2π)−kα/2|T̄P0T̄′ + R̄Q̄R̄′|−1

× exp
{
− 1

2
(
αt − T̄αt−1

)′(
(T̄P0T̄′ + R̄Q̄R̄′)−1)(αt − T̄αt−1

)}
× (2π)−ky/2|Z̄P0Z̄′ + H̄|−1exp

{
− 1

2
(
yt − Z̄αt

)′(
(Z̄P0Z̄′ + H̄)−1)(yt − Z̄αt

)}]

= (2π)−
T(kα+ky)

2 |T̄P0T̄′ + R̄Q̄R̄′|−T|Z̄P0Z̄′ + H̄|−T

× exp

{
− 1

2

(
T

∑
t=1

(
αt − T̄αt−1

)′(
αt − T̄αt−1

)
(T̄P0T̄′ + R̄Q̄R̄′)

+
T

∑
t=1

(
yt − Z̄αt

)′(yt − Z̄αt
)

(Z̄P0Z̄′ + H̄)

)}
(A.47)

Although the function appears intractable at first, note that the conditionals for yt and αt are
straightforward to derive. Simply rewrite the exponential. Thus this can be estimated by a
Gibbs Sampler. In [Geweke and Tanizaki, 2001] the hyperparameters are defined as stochastic
and prior distributions are defined. In such a case, it is very likely that deriving conditionals for
these parameters above is intractable. The authors then propose to make use of the Metropolis-
Hastings algorithm within each Gibbs sampling step.
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A.5 Normal-Inverse-Gamma Distribution

The Gamma distribution is given either by a shape and scale (s, S) parametrization or a shape
and rate parametrization (α, β):

G(x|s, S) =
xs−1

SsΓ(s)
exp
(
− x

S

)
G(x|α, β) =

βαxα−1

Γ(α)
exp
(
− βx

) (A.48)

They are transformed into one another by the relations: α = s and S = 1
β .

The relation between the inverse-gamma and the gamma is quantified by:

X ∼ G(α, β) then
1
X
∼ IG(α, β) (A.49)

Thus:

IG(x|α, β) =
βαx−α+1

Γ(α)
exp
(
− β

x

)
(A.50)

The normal-inverse gamma is then given by:

σ2 ∼ IG(α, β)

µ|σ2 ∼ N(µ0, σ2)

P[x|µ, σ] ∼ 1
σ
√

2π

βα

Γ(α)

(
1
σ2

)α−1

exp

(
− 2β + (x− µ)2

2σ2

) (A.51)

A.6 Multivariate versions of Normal-Inverse-Gamma distribution

Although the normal distribution is quite straightforwardly scaled into a n-dimensional version
of itself, this is not the case for the gamma and the inverse gamma distribution. Interestingly,
there exist several forms in the literature, but commonly the Wishart distribution is chosen for
Bayesian models. The normal-inverse-Wishart prior is given by:

Σ ∼IW(Λ−1
0 , v0)

µ|Σ ∼N(µ0, Σ/κ0)

P[µ, Σ] =NIW(µ0, κ0, Λ0, v0)

=
|Λ0|v0/2

2v0d/2Γd(v0/2)(2π/κ0)d/2 exp

(
− 1

2
tr
(

Λ0Σ−1
)
− κ0

2
(µ− µ0)

TΣ−1(µ− µ0)

) (A.52)
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Fama and French Portfolios Dataset

Starting Month Type Starting Month Type
192607 Agric 192607 Ships
192607 Food 196307 Guns
196307 Soda 196307 Gold
192607 Beer 192607 Mines
192607 Smoke 192607 Coal
192607 Toys 192607 Oil
192607 Fun 192607 Util
192607 Books 192607 Telcm
192607 Hshld 192707 PerSv
192607 Clths 192607 BusSv
196907 Hlth 192607 Hardw
192607 MedEq 196507 Softw
192607 Drugs 192607 Chips
192607 Chems 192607 LabEq
193107 Rubbr 193004 Paper
192607 Txtls 192607 Boxes
192607 BldMt 192607 Trans
192607 Cnstr 192607 Whlsl
192607 Steel 192607 Rtail
196307 FabPr 192607 Meals
192607 Mach 192607 Banks
192607 ElcEq 192607 Insur
192607 Autos 192607 RlEst
192607 Aero 192607 Fin
192607 Other

Table B.1: Portfolios and starting dates
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C

Results 2 Step Procedure

C.1 Default Setting

Fig. C.1

Fig. C.2
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C.2 Varying α

Fig. C.3

Fig. C.4
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Fig. C.5

Fig. C.6
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C.3 Varying s

Fig. C.7

Fig. C.8
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Fig. C.9

Fig. C.10
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C.4 Varying S

Fig. C.11

Fig. C.12
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Fig. C.13

Fig. C.14
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C.5 Varying τ

Fig. C.15

Fig. C.16



C.5. Varying τ 93

Fig. C.17

Fig. C.18
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C.6 Without V being fixed

Fig. C.19

Fig. C.20
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Results Clustered Correlations Model

Fig. D.1
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96 Results Clustered Correlations Model

Fig.D
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E

Parallelizable parts of the Clustered Correlations
Algorithm

Fig. E.1: Parallelizable parts (green) of the Clustered Correlations Algorithm
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